References

  1. G.M. Geise, H.-S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath, D.R. Paul, Water purification by membranes: the role of polymer science, J. Polym. Sci., Part B: Polym. Phys., 48 (2010) 1685–1718.
  2. K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370 (2011) 1–22.
  3. H. Etemadi, R. Yegani, M. Seyfollahi, The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems, Sep. Purif. Technol., 177 (2017) 350–362.
  4. X.-S. Fan, Z.-T. Liu, Z.-W. Liu, J. Lu, Cellulose acetate membrane synthesis from biomass of ramie, J. Appl. Polym. Sci., 117 (2010) 588–595.
  5. N.M. Wade, Technical and economic evaluation of distillation and reverse osmosis desalination processes, Desalination, 93 (1993) 343–363.
  6. J.W. Lee, J.H. Jang, H.-R. Chae, S.H. Lee, C.-H. Lee, P.-K. Park, Y.-J. Won, I.-C. Kim, A facile route to enhance the water flux of a thin-film composite reverse osmosis membrane: incorporating thickness-controlled graphene oxide into a highly porous support layer, J. Mater. Chem. A, 3 (2015) 22053–22060.
  7. M. Said, S. Ebrahim, A. Gad, S. Kandil, Performance and stability of diaminotoluene-based polyamide composite reverse osmosis membranes incorporated with additives and cast on polyester fabric, Desal. Water Treat., 86 (2017) 115–123.
  8. M.R. Bilad, E. Guillen-Burrieza, M.O. Mavukkandy, F.A. Al Marzooqi, H.A. Arafat, Shrinkage, defect and membrane distillation performance of composite PVDF membranes, Desalination, 376 (2015) 62–72.
  9. A. Morsy, S. Ebrahim, E.-R. Kenawy, T. Abdel-Fattah, S. Kandil, Grafted cellulose acetate reverse osmosis membrane using 2-acrylamido-2-methylpropanesulfonic acid for water desalination, Water Sci. Technol. Water Supply, 57 (2016) 1046–1056.
  10. A. Bhattacharya, B.N. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications, Prog. Polym. Sci., 29 (2004) 767–814.
  11. K. Kato, E. Uchida, E.-T. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains, Prog. Polym. Sci., 28 (2003) 209–259.
  12. Y. Uyama, K. Kato, Y. Ikada, Surface Modification of Polymers by Grafting, In: Grafting/Characterization Techniques/Kinetic Modeling, Springer, Berlin, Heidelberg, 1998, pp. 1–39.
  13. B. Zhao, W.J. Brittain, Polymer brushes: surface-immobilized macromolecules, Prog. Polym. Sci., 25 (2000) 677–710.
  14. M. Amiji, K. Park, Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity, J. Biomater. Sci., Polym. Ed., 4 (1993) 217–234.
  15. M. Billy, A.R. Da Costa, P. Lochon, R. Clément, M. Dresch, S. Etienne, J.M. Hiver, L. David, A. Jonquières, Cellulose acetate graft copolymers with nano-structured architectures: synthesis and characterization, Eur. Polym. J., 46 (2010) 944–957.
  16. A. Jayalakshmi, I.-C. Kim, Y.-N. Kwon, Cellulose acetate graft-(glycidylmethacrylate-g-PEG) for modification of AMC ultrafiltration membranes to mitigate organic fouling, RSC Adv., 5 (2015) 48290–48300.
  17. G.H. Zou, J. Shen, P.Z. Duan, X. Xia, R.G. Chen, B. Jin, Temperature-sensitive poly(n-isopropyl acrylamide)/konjac glucomannan/graphene oxide composite membranes with improved mechanical property, swelling capability, and degradability, J. Polym. Sci., 2018 (2018) 1–10, https://doi. org/10.1155/2018/7906747.
  18. A. Bhattacharya, P. Ray, Chapter 2 – Basic Features and Techniques, A. Bhattacharya, J.W. Rawlins, P. Ray, Eds., Polymer Grafting and Crosslinking, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009, pp. 7–64.
  19. C.H. Worthley, K.T. Constantopoulos, M. Ginic-Markovic, R.J. Pillar, J.G. Matisons, S. Clarke, Surface modification of commercial cellulose acetate membranes using surfaceinitiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance, Desalination, 273 (2011) 299–307.
  20. R. Kumar, R. Kr. Sharma, A.P. Singh, Grafting of cellulose with N-isopropyl acrylamide and glycidyl methacrylate for efficient removal of Ni(II), Cu(II) and Pd(II) ions from aqueous solution, Sep. Purif. Technol., 219 (2019) 249–259.
  21. M.S.F. Dasilva, Polyamide and Polyetherimide Organic Solvent Nanofiltration Membranes, Dissertation, University of Nova De Lisboa, 2007.
  22. C. Gorey, I.C. Escobar, N-isopropyl acrylamide (N-IPAAM) modified cellulose acetate ultrafiltration membranes, J. Membr. Sci., 383 (2011) 272–279.
  23. B.F. Kingsbury, K.A. Li, Morphological study of ceramic hollow fiber membranes, J. Membr. Sci., 328 (2009) 134–140.
  24. S. Waheed, A. Ahmad, S. Maqsood Khan, Sabad-e-Gul, T. Jamil, A. Islam, T. Hussain, Synthesis, characterization, permeation and antibacterial properties of cellulose acetate/polyethylene glycol membranes modified with chitosan, Desalination, 351 (2014) 59–69.
  25. M. Raposo, Q. Ferreira, P.A. Ribeiro, A Guide for Atomic Force Microscopy Analysis of Soft-Condensed Matter, A. Méndez- Vilas, J. Díaz, Eds., Modern Research and Educational Topics in Microscopy, FORMATEX, Badajoz, Spain, 2007.
  26. N. Hilal, H. Al-Zoubi, N.A. Darwish, A.W. Mohammad, Characterisation of nanofiltration membranes using atomic force microscopy, Desalination, 177 (2005) 187–199.
  27. Z. Zhang, Z. Wang, J.X. Wang, S.C. Wang, Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N,N′-Methylenebis(acrylamide), Desalination, 309 (2013) 187–196
  28. H. Kamal, F.M. Abd-Elrahim, S. Lotfy, Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation, J. Radiat. Res. Appl. Sci., 7 (2014) 146–153.
  29. A. Halim, Y.C. Xu, K.-H. Lin, M. Kobayashi, M. Kajiyama, T. Enomae, Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane, Sep. Purif. Technol., 224 (2019) 322–331.
  30. J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, J. Membr. Sci., 318 (2008) 458–466.
  31. S. Bhattacharjee, Concentration Polarization: Early Theories, Water Planet, Inc., 8915 South La Cienega Avenue, Los Angeles, CA 90301 USA, 2017, pp. 1–10.
  32. M. Theresa, M. Pendergast, J.M. Nygaard, A.K. Ghosh, E.M.V. Hoek, Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction, Desalination, 261 (2010) 255–263.
  33. R. Pang, K.S. Zhang, High-flux polyamide reverse osmosis membranes by surface grafting 4-(2-hydroxyethyl)morpholine, RSC Adv., 7 (2017) 40705–40710.
  34. E. Dimitriou, P. Boutikos, E. Sh. Mohamed, S. Koziel, G. Papadakis, Theoretical performance prediction of a reverse osmosis desalination membrane element under variable operating conditions, Desalination, 419 (2017) 70–78.