References
- H.Z. Abyaneh, Evaluation of multivariate linear regression
and artificial neural networks in prediction of water quality
parameters, J. Environ. Health Sci. Eng., 12 (2014) 1–8.
- E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial
neural networks to estimate wastewater treatment plant inlet
biochemical oxygen demand, Environ. Prog. Sustainable Energy,
27 (2008) 439–446.
- J.K. Jain, Wastewater Engineering: Including Air Pollution,
Laxmi Publications, India, 2014.
- S. Das, K. Radhakrishnan, Multicriteria decision making model
of wastewater reuse: a stakeholders perspective in the context of
India, Desal. Water Treat., 163 (2019) 17–25.
- V. Nourani, G. Elkiran, S.I. Abba, Wastewater treatment plant
performance analysis using artificial intelligence – an ensemble
approach, Water Sci. Technol., 78 (2018) 2064–2076.
- Z.Q. Huang, J.X. Luo, X.J. Li, Y.J. Zhou, Prediction of
Effluent Parameters of Wastewater Treatment Plant Based on
Improved Least Square Support Vector Machine with PSO,
First International Conference on Information Science and
Engineering, Nanjing, China, 2009, pp. 4058–4061.
- F. Granata, S. Papirio, G. Esposito, R. Gargano, G. de Marinis,
Machine learning algorithms for the forecasting of wastewater
quality indicators, Water, 9 (2017) 1–12.
- G. Civelekoglu, N.O. Yigit, E. Diamadopoulos, M. Kitis,
Modelling of COD removal in a biological wastewater
treatment plant using adaptive neuro-fuzzy inference system
and artificial neural network, Water Sci. Technol., 60 (2009)
1475–1487.
- D. Ribeiro, A. Sanfins, O. Belo, Wastewater Treatment Plant
Performance Prediction with Support Vector Machines,
P. Perner, Ed., Advances in Data Mining. Applications and
Theoretical Aspects, Vol. 7987, 13th Industrial Conference,
ICDM 2013, New York, NY, USA, 2013, pp. 99–111.
- S. Pakrou, N. Mehrdadi, A. Baghvand, ANN modeling to
predict the COD and efficiency of waste pollutant removal from
municipal wastewater treatment plants, Curr. World Environ.,
10 (2015) 873–881.
- M.S. Nasr, M.A.E. Moustafa, H.A.E. Seif, G. El Kobrosy,
Application of artificial neural network (ANN) for the prediction
of EL-AGAMY wastewater treatment plant performance-
EGYPT, Alexandria Eng. J., 51 (2012) 37–43.
- M.S. Gaya, N.A. Wahab, Y.M. Sam, A.N. Anuar, S.I. Samsuddin,
ANFIS modelling of carbon removal in domestic wastewater
treatment plant, Appl. Mech. Mater., 372 (2013) 597–601.
- W.C. Chen, N.-B. Chang, W.K. Shieh, Advanced hybrid
fuzzy-neural controller for industrial wastewater treatment,
J. Environ. Eng., 11 (2001) 1048–1059.
- A. Maleki, S. Nasseri, M.S. Aminabad, M. Hadi, Comparison
of ARIMA and NNAR models for forecasting water
treatment plant’s influent characteristics, J. Civ. Eng., 22 (2018)
3233–3245.
- S.I. Abba, G. Elkiran, Effluent prediction of chemical oxygen
demand from the wastewater treatment plant using artificial
neural network application, Procedia Comput. Sci., 120 (2017)
156–163.
- C. Sharma, C.S.P. Ojha, A.K. Shukla, Q.B. Pham, N.T.T. Linh,
C.M. Fai, H.H. Loc, T.D. Dung, Modified approach to reduce
GCM bias in downscaled precipitation: a study in Ganga River
Basin, Water, 11 (2019) 1–31.
- A. Verma, X. Wei, A. Kusiak, Predicting the total suspended
solids in wastewater: a data-mining approach, Eng. Appl. Artif.
Intell., 26 (2013) 1366–1372.
- M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of
wastewater treatment plant performance using artificial neural
networks, Environ. Model Software, 19 (2004) 919–928.
- M.S. Gaya, M.U. Zango, L.A. Yusuf, M. Mustapha,
B. Muhammad, A. Sani, A. Tijjani, N.A. Wahab, M.T.M.
Khairi, Estimation of turbidity in water treatment plant using
hammerstein-wiener and neural network technique, Indones.
J. Electr. Eng. Comput. Sci., 5 (2017) 666–672.
- E. Sharghi, V. Nourani, A.A. Ashrafi, H. Gökçekuş, Monitoring
effluent quality of wastewater treatment plant by clustering
based artificial neural network method, Desal. Water Treat.,
164 (2019) 86–97.
- M.S. Gaya, N. Abdul Wahab, Y.M. Sam, S.I. Samsudin, ANFIS
modelling of carbon and nitrogen removal in domestic
wastewater treatment plant, J. Teknol., 67 (2014) 29–34.
- G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine:
theory and applications, Neurocomputing, 70 (2006) 489–501.
- G. Huang, G.-B. Huang, S. Song, K. You, Trends in extreme
learning machines: a review, Neural Networks, 61 (2015) 32–48.
- L.J. Zhao, X.K. Diao, D.C. Yuan, W. Tang, Enhanced classification
based on probabilistic extreme learning machine in wastewater
treatment process, Procedia Eng., 15 (2011) 5563–5567.
- P. Yu, J. Cao, V. Jegatheesan, X. Du, A real-time BOD estimation
method in wastewater treatment process based on an optimized
extreme learning machine, Appl. Sci., 9 (2019) 1–12.
- X. Deng, C. Lin, Application of ELM to predict the coagulant
dosing in water treatment plants, Water Sci. Technol. Water
Supply, 17 (2017) 1053–1061.
- M. Djerioui, M. Bouamar, M. Ladjal, A. Zerguine, Chlorine soft
sensor based on extreme learning machine for water quality
monitoring, Arabian J. Sci. Eng., 44 (2019) 2033–2044.
- A.R.S. Parmezan, V.M.A. Souza, G.E.A.P.A. Batista, Evaluation
of statistical and machine learning models for time series
prediction: identifying the state-of-the-art and the best
conditions for the use of each model, Inf. Sci., 484 (2019) 302–337.
- K. Kandananond, A comparison of various forecasting methods
for autocorrelated time series, Int. J. Eng. Bus. Manage., 4 (2012)
1–6.
- R.C. Deo, M. Şahin, Application of the extreme learning
machine algorithm for the prediction of monthly effective
drought index in eastern Australia, Atmos. Res., 153 (2015)
512–525.
- Z.M. Yaseen, S.O. Sulaiman, R.C. Deo, K.-W. Chau, An enhanced
extreme learning machine model for river flow forecasting:
state-of-the-art, practical applications in water resource
engineering area and future research direction, J. Hydrol., 569
(2019) 387–408.
- Z.M. Yaseen, O. Jaafar, R.C. Deo, O. Kisi, J. Adamowski,
J. Quilty, A. El-Shafie, Stream-flow forecasting using extreme
learning machines: a case study in a semi-arid region in Iraq,
J. Hydrol., 542 (2016) 603–614.
- V. Vapnik, The Nature of Statistical Learning Theory, Springer-
Verlag, New York, 1995.
- V.N. Vapnik, A.Y. Chervonenkis, On the method of ordered risk
minimization I, Autom. Remote Control, 35 (1974) 1226–1235.
- J. Wang, H. Du, H. Liu, X. Yao, Z. Hu, B. Fan, Prediction of
surface tension for common compounds based on novel
methods using heuristic method and support vector machine,
Talanta, 73 (2007) 147–156.
- D.Ö. Faruk, A hybrid neural network and ARIMA model for
water quality time series prediction, Eng. Appl. Artif. Intell.,
23 (2010) 586–594.
- S.I. Abba, M.S. Gaya, M.L. Yakubu, M.U. Zango,
R.A. Abdulkadir, M.A. Saleh, A.N. Hamza, U. Abubakar,
A.I. Tukur, N.A. Wahab, Modelling of Uncertain System:
A comparison study of Linear and Non-Linear Approaches,
IEEE International Conference on Automatic Control and
Intelligent Systems (I2CACIS), Malaysia, 2019.
- G.P. Zhang, Time series forecasting using a hybrid ARIMA and
neural network model, Neurocomputing, 50 (2003) 159–175.
- M.E. Turan, M.A. Yurdusev, River flow estimation from
upstream flow records by artificial intelligence methods,
J. Hydrol., 369 (2009) 71–77.
- W.-c. Wang, K.-w. Chau, L. Qiu, Y.-bo. Chen, Improving
forecasting accuracy of medium and long-term runoff using
artificial neural network based on EEMD decomposition,
Environ. Res., 139 (2017) 46–54.
- V. Nourani, An emotional ANN (EANN) approach to modeling
rainfall-runoff process, J. Hydrol., 544 (2017) 267–277.
- G. Elkiran, V. Nouren, S.I. Abba, J. Abdullahi, Artificial
intelligence-based approaches for multi-station modelling
of dissolve oxygen in river, Global J. Environ. Sci. Manage.,
4 (2018) 439–450.
- N.S.A. Yasmin, M.S. Gaya, N.A. Wahab, Y.M. Sam, Estimation
of pH and MLSS using neural network, Telkomnika, 15 (2017)
912–918.
- H. Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J.-p. Park, J.H. Kim,
K.H. Cho, Prediction of effluent concentration in a wastewater
treatment plant using machine learning models, J. Environ. Sci.,
32 (2015) 90–101.
- K.E. Taylor, Summarizing multiple aspects of model
performance in a single diagram, J. Geophys. Res., 106 (2001)
7183–7192.
- M.A. Ghorbani, R.C. Deo, Z.M. Yaseen, M.H. Kashani,
B. Mohammadi, Pan evaporation prediction using a hybrid
multilayer perceptron-firefly algorithm (MLP-FFA) model:
case study in North Iran, Theor. Appl. Climatol., 133 (2018)
1119–1131.