References

  1. H.Z. Abyaneh, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters, J. Environ. Health Sci. Eng., 12 (2014) 1–8.
  2. E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand, Environ. Prog. Sustainable Energy, 27 (2008) 439–446.
  3. J.K. Jain, Wastewater Engineering: Including Air Pollution, Laxmi Publications, India, 2014.
  4. S. Das, K. Radhakrishnan, Multicriteria decision making model of wastewater reuse: a stakeholders perspective in the context of India, Desal. Water Treat., 163 (2019) 17–25.
  5. V. Nourani, G. Elkiran, S.I. Abba, Wastewater treatment plant performance analysis using artificial intelligence – an ensemble approach, Water Sci. Technol., 78 (2018) 2064–2076.
  6. Z.Q. Huang, J.X. Luo, X.J. Li, Y.J. Zhou, Prediction of Effluent Parameters of Wastewater Treatment Plant Based on Improved Least Square Support Vector Machine with PSO, First International Conference on Information Science and Engineering, Nanjing, China, 2009, pp. 4058–4061.
  7. F. Granata, S. Papirio, G. Esposito, R. Gargano, G. de Marinis, Machine learning algorithms for the forecasting of wastewater quality indicators, Water, 9 (2017) 1–12.
  8. G. Civelekoglu, N.O. Yigit, E. Diamadopoulos, M. Kitis, Modelling of COD removal in a biological wastewater treatment plant using adaptive neuro-fuzzy inference system and artificial neural network, Water Sci. Technol., 60 (2009) 1475–1487.
  9. D. Ribeiro, A. Sanfins, O. Belo, Wastewater Treatment Plant Performance Prediction with Support Vector Machines, P. Perner, Ed., Advances in Data Mining. Applications and Theoretical Aspects, Vol. 7987, 13th Industrial Conference, ICDM 2013, New York, NY, USA, 2013, pp. 99–111.
  10. S. Pakrou, N. Mehrdadi, A. Baghvand, ANN modeling to predict the COD and efficiency of waste pollutant removal from municipal wastewater treatment plants, Curr. World Environ., 10 (2015) 873–881.
  11. M.S. Nasr, M.A.E. Moustafa, H.A.E. Seif, G. El Kobrosy, Application of artificial neural network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance- EGYPT, Alexandria Eng. J., 51 (2012) 37–43.
  12. M.S. Gaya, N.A. Wahab, Y.M. Sam, A.N. Anuar, S.I. Samsuddin, ANFIS modelling of carbon removal in domestic wastewater treatment plant, Appl. Mech. Mater., 372 (2013) 597–601.
  13. W.C. Chen, N.-B. Chang, W.K. Shieh, Advanced hybrid fuzzy-neural controller for industrial wastewater treatment, J. Environ. Eng., 11 (2001) 1048–1059.
  14. A. Maleki, S. Nasseri, M.S. Aminabad, M. Hadi, Comparison of ARIMA and NNAR models for forecasting water treatment plant’s influent characteristics, J. Civ. Eng., 22 (2018) 3233–3245.
  15. S.I. Abba, G. Elkiran, Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application, Procedia Comput. Sci., 120 (2017) 156–163.
  16. C. Sharma, C.S.P. Ojha, A.K. Shukla, Q.B. Pham, N.T.T. Linh, C.M. Fai, H.H. Loc, T.D. Dung, Modified approach to reduce GCM bias in downscaled precipitation: a study in Ganga River Basin, Water, 11 (2019) 1–31.
  17. A. Verma, X. Wei, A. Kusiak, Predicting the total suspended solids in wastewater: a data-mining approach, Eng. Appl. Artif. Intell., 26 (2013) 1366–1372.
  18. M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of wastewater treatment plant performance using artificial neural networks, Environ. Model Software, 19 (2004) 919–928.
  19. M.S. Gaya, M.U. Zango, L.A. Yusuf, M. Mustapha, B. Muhammad, A. Sani, A. Tijjani, N.A. Wahab, M.T.M. Khairi, Estimation of turbidity in water treatment plant using hammerstein-wiener and neural network technique, Indones. J. Electr. Eng. Comput. Sci., 5 (2017) 666–672.
  20. E. Sharghi, V. Nourani, A.A. Ashrafi, H. Gökçekuş, Monitoring effluent quality of wastewater treatment plant by clustering based artificial neural network method, Desal. Water Treat., 164 (2019) 86–97.
  21. M.S. Gaya, N. Abdul Wahab, Y.M. Sam, S.I. Samsudin, ANFIS modelling of carbon and nitrogen removal in domestic wastewater treatment plant, J. Teknol., 67 (2014) 29–34.
  22. G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (2006) 489–501.
  23. G. Huang, G.-B. Huang, S. Song, K. You, Trends in extreme learning machines: a review, Neural Networks, 61 (2015) 32–48.
  24. L.J. Zhao, X.K. Diao, D.C. Yuan, W. Tang, Enhanced classification based on probabilistic extreme learning machine in wastewater treatment process, Procedia Eng., 15 (2011) 5563–5567.
  25. P. Yu, J. Cao, V. Jegatheesan, X. Du, A real-time BOD estimation method in wastewater treatment process based on an optimized extreme learning machine, Appl. Sci., 9 (2019) 1–12.
  26. X. Deng, C. Lin, Application of ELM to predict the coagulant dosing in water treatment plants, Water Sci. Technol. Water Supply, 17 (2017) 1053–1061.
  27. M. Djerioui, M. Bouamar, M. Ladjal, A. Zerguine, Chlorine soft sensor based on extreme learning machine for water quality monitoring, Arabian J. Sci. Eng., 44 (2019) 2033–2044.
  28. A.R.S. Parmezan, V.M.A. Souza, G.E.A.P.A. Batista, Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model, Inf. Sci., 484 (2019) 302–337.
  29. K. Kandananond, A comparison of various forecasting methods for autocorrelated time series, Int. J. Eng. Bus. Manage., 4 (2012) 1–6.
  30. R.C. Deo, M. Şahin, Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia, Atmos. Res., 153 (2015) 512–525.
  31. Z.M. Yaseen, S.O. Sulaiman, R.C. Deo, K.-W. Chau, An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction, J. Hydrol., 569 (2019) 387–408.
  32. Z.M. Yaseen, O. Jaafar, R.C. Deo, O. Kisi, J. Adamowski, J. Quilty, A. El-Shafie, Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq, J. Hydrol., 542 (2016) 603–614.
  33. V. Vapnik, The Nature of Statistical Learning Theory, Springer- Verlag, New York, 1995.
  34. V.N. Vapnik, A.Y. Chervonenkis, On the method of ordered risk minimization I, Autom. Remote Control, 35 (1974) 1226–1235.
  35. J. Wang, H. Du, H. Liu, X. Yao, Z. Hu, B. Fan, Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine, Talanta, 73 (2007) 147–156.
  36. D.Ö. Faruk, A hybrid neural network and ARIMA model for water quality time series prediction, Eng. Appl. Artif. Intell., 23 (2010) 586–594.
  37. S.I. Abba, M.S. Gaya, M.L. Yakubu, M.U. Zango, R.A. Abdulkadir, M.A. Saleh, A.N. Hamza, U. Abubakar, A.I. Tukur, N.A. Wahab, Modelling of Uncertain System: A comparison study of Linear and Non-Linear Approaches, IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Malaysia, 2019.
  38. G.P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50 (2003) 159–175.
  39. M.E. Turan, M.A. Yurdusev, River flow estimation from upstream flow records by artificial intelligence methods, J. Hydrol., 369 (2009) 71–77.
  40. W.-c. Wang, K.-w. Chau, L. Qiu, Y.-bo. Chen, Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition, Environ. Res., 139 (2017) 46–54.
  41. V. Nourani, An emotional ANN (EANN) approach to modeling rainfall-runoff process, J. Hydrol., 544 (2017) 267–277.
  42. G. Elkiran, V. Nouren, S.I. Abba, J. Abdullahi, Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river, Global J. Environ. Sci. Manage., 4 (2018) 439–450.
  43. N.S.A. Yasmin, M.S. Gaya, N.A. Wahab, Y.M. Sam, Estimation of pH and MLSS using neural network, Telkomnika, 15 (2017) 912–918.
  44. H. Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J.-p. Park, J.H. Kim, K.H. Cho, Prediction of effluent concentration in a wastewater treatment plant using machine learning models, J. Environ. Sci., 32 (2015) 90–101.
  45. K.E. Taylor, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106 (2001) 7183–7192.
  46. M.A. Ghorbani, R.C. Deo, Z.M. Yaseen, M.H. Kashani, B. Mohammadi, Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran, Theor. Appl. Climatol., 133 (2018) 1119–1131.