References

  1. F.H. de Souza, B.S. Pizzolatti, J.M. Schöntag, M.L. Sens, Study of slow sand filtration with backwash and the influence of the filter media on the filter recovery and cleaning, Environ. Technol., 37 (2016) 1802–1810.
  2. A. Liénard, Y. Racault, Epuration sur supports granulaires: Principes et mise en oeuvre, EUROVITI, Montpellier, 2003, pp. 26–27.
  3. O.A. Olafadehan, O.W. Jinadu, L. Salami, O.T. Popoola, Treatment of brewery wastewater effluent using activated carbon, Int. J. Appl. Sci. Technol., 2 (2012) 165–178.
  4. S.A. Al-Jlil, COD and BOD reduction of domestic wastewater using activated sludge, sand filters and activated carbon in Saudi Arabia, Biotechnology, 8 (2009) 473–477.
  5. J.M. Hua, P.L. An, J. Winter, C. Gallert, Elimination of COD, microorganisms and pharmaceuticals from sewage by trickling through sandy soil below leaking sewers, Water Res., 37 (2003) 4395–4404.
  6. M.L. Weber-Shirk, Enhancing slow sand filter performance with an acid-soluble seston extract, Water Res., 36 (2002) 4753–4756.
  7. N.-E. Sabiri, E. Monnier, V. Raimbault, A. Massé, V. Séchet, P. Jaouen, Effect of filtration rate on coal-sand dual-media filter performances for microalgae removal, Environ. Technol., 38 (2017) 345–352.
  8. J.K. Kim, J.A. Nason, D.F. Lawler, Influence of surface charge distributions and particle size distributions on particle attachment in granular media filtration, Environ. Sci. Technol., 42 (2008) 2557–2562.
  9. T. Asano, F.L. Burton, H.L. Leverenz, R. Tsuchihashi, G. Tchobanoglous, Water Reuse: Issues, Technologies, and Applications, Metcalf & Eddy, Inc., New York, 2007.
  10. B. Benmezroua, Etude Numérique et Expérimentale, à L’échelle Microstructurelle, du Transport Granulaire Dans les Matériaux Poreux Saturés, INSA de Rennes, France, 2011.
  11. F. Rogalla, P. Ravarini, G. de Larminat, J. Couttelle, Large-scale biological nitrate and ammonia removal, Water Environ. J., 4 (1990) 319–328.
  12. A. Bhatnagar, A.K. Minocha, Conventional and nonconventional adsorbents for removal of pollutants from water – a review, Indian J. Chem. Technol., 13 (2006) 203–217.
  13. L. Dauphin, Développement d’un test rapide pour prédire la performance d’un réacteur à haute concentration de charbon actif recirculé, École Polytechnique de Montréal, Canada, 2017.
  14. R. Singhon, Adsorption of Cu(II) and Ni(II) Ions on Functionalized Colloidal Silica Particles Model Studies for Wastewater Treatment, Thesis for the Degree of Doctor of Science (Chemistry), Franche-Comté University, France, 2014.
  15. T.F. de Oliveira Penalver, Etude d’un procédé de dépollution basé sur le couplage ozone/charbon actif pour l’élimination des phtalates en phase aqueuse, University of Orléans, Orléans- France, 2011.
  16. H.P. Shivaraju, H. Egumbo, P. Madhusudan, K.M. Anil Kumar, G. Midhun, Preparation of affordable and multifunctional claybased ceramic filter matrix for treatment of drinking water, Environ. Technol., 40 (2019) 1633–1643.
  17. L.-M. Sun, F. Meunier, N. Brodu, M.-H. Manero, Adsorption: Aspects Théoriques, Techniques de l’ingénieur, France, 2003.
  18. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon—a critical review, Chemosphere, 58 (2005) 1049–1070.
  19. C. Wang, Etude comparative des matériaux de garnissage dans les réacteurs de filtration pour l’assainissement non collectif, Thesis for the Degree of Doctor of Water, Soil and Environment, Limoges University, France, 2015.
  20. USEPA, APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, United States Environmental Protection Agency, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, 1998, pp. 3–37.
  21. C.A. Arias, M. Del Bubba, H. Brix, Phosphorus removal by sands for use as media in subsurface flow constructed reed beds, Water Res., 35 (2001) 1159–1168.
  22. F. Chen, J. Tao, K. Mancl, Sand Size Analysis for Onsite Wastewater Treatment System, Determination of Sand Effective Size and Uniformity Coefficient, The Ohio State University, USA, 2008. Available at: https://ohioline.osu.edu/factsheet/aex-757
  23. M. Achak, L. Mandi, N. Ouazzani, Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter, J. Environ. Manage., 90 (2009) 2771–2779.
  24. M.C. Moran, D.C. Moran, R.S. Cushing, D.F. Lawler, Particle behavior in deep-bed filtration: Part 2—particle detachment, J. Am. Water Works Assn., 85 (1993) 82–93.
  25. A. Liénard, H. Guellaf, C. Boutin, Choice of the sand for sand filters used for secondary treatment of wastewater, Water Sci. Technol., 44 (2001) 189–196.
  26. G. Yamina, A. Abdeltif, T. Youcef, H.M. Mahfoud, G. Fatiha, B. Lotfi, A comparative study of the addition effect of activated carbon obtained from date stones on the biological filtration efficiency using sand dune bed, Energy Procedia, 36 (2013) 1175–1183.
  27. P.D. Davies, A.D. Wheatley, Pilot plant study of alternative filter media for rapid gravity filtration, Water Sci. Technol., 66 (2012) 2779–2784.
  28. A. Kellil, D. Bensafia, Removal of phosphates by direct filtration on sand bed, J. Water Sci., 16 (2003) 317–332.
  29. S. Verma, A. Daverey, A. Sharma, Slow sand filtration for water and wastewater treatment – a review, Environ. Technol. Rev., 6 (2017) 47–58.
  30. L. Rolland, P. Molle, A. Liénard, F. Bouteldja, A. Grasmick, Influence of the physical and mechanical characteristics of sands on the hydraulic and biological behaviors of sand filters, Desalination, 248 (2009) 998–1007.
  31. N. Roussel, T.L.H. Nguyen, P. Coussot, General probabilistic approach to the filtration process, Phys. Rev. Lett., 98 (2007) 114502.
  32. V. Ramachandran, H.S. Fogler, Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores, J. Fluid Mech., 385 (1999) 129–156.
  33. Z. Skaf, O.F. Eker, I.K. Jennions, A simple state-based prognostic model for filter clogging, Procedia CIRP, 38 (2015) 177–182.
  34. F. Gherairi, B. Hamdi-Aissa, Y. Touil, M. Hadj-Mahammed, H. Messrouk, A. Amrane, Comparative study between two granular materials and their influence on the effectiveness of biological filtration, Energy Procedia, 74 (2015) 799–806.
  35. K. Khengaoui, M.H. Mahammed, Y. Touil, A. Amrane, Influence of secondary salinity wastewater on the efficiency of biological treatment of sand filter, Energy Procedia, 74 (2015) 398–403.
  36. M.G. Healy, M. Rodgers, P. Burke, Quantificaton of biofilm build-up in filters when intermittently loaded with low-strength synthetic wastewater, Desalination, 271 (2011) 105–110.
  37. M. Achak, N. Ouazzani, L. Mandi, Élimination des polluants organiques des effluents de l’industrie oléicole par combinaison d’un filtre à sable et un lit planté, Rev. Des Sci. l’eau/J. Water Sci., 24 (2011) 35–51.
  38. E.J. Roth, B. Gilbert, D.C. Mays, Colloid deposit morphology and clogging in porous media: fundamental insights through investigation of deposit fractal dimension, Environ. Sci. Technol., 49 (2015) 12263–12270.
  39. M. Ben Abbou, M. El Haji, Treatments by electrocoagulationfiltration of uncontrolled leachate discharge from the city of Taza and re-use in the germination of sorghum and alfalfa, Int. J. Innovation Appl. Stud., 9 (2014) 355–366.
  40. B. Lipták, Instrument Engineers’ Handbook: Process Measurement and Analysis, CRC Press, Boca Raton, Florida, 2003.
  41. C. Baudequin, Design of a Mobile Post-Treatment Unit for the Water used During Fire Extinguishment, Chemical and Process Engineering, Ecole Centrale Paris, 2011.
  42. B. Thayer, K. Riahi, H. Boudhraa, Élimination de la turbidité par oxygénation et filtration successives des eaux de la station de Sfax (Sud de la Tunisie), Rev. Des Sci. l’eau/J. Water Sci., 20 (2007) 355–365.
  43. J.L. Darby, D.F. Lawler, T.P. Wilshusen, Depth filtration of wastewater: particle size and ripening, Res. J. Water Pollut. Control Fed., 63 (1991) 228–238.
  44. C. Li, Y.F. Wu, L.B. Zhang, W. Liu, Treatment Efficiencies of Slow Sand Filtration for Landscape Water, 2010 4th International Conference on Bioinformatics and Biomedical Engineering, IEEE, Chengdu, China, 2010, pp. 1–3.
  45. CAWST, BioSand Filter Manual–Design, Construction, Installation, Operation and Maintenance, Centre for Affordable Water and Sanitation Technology, Canada, 2009.
  46. L.L. Wu, X. Zhao, Z. Meng, Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge, Chemosphere, 83 (2011) 693–699.
  47. M.W. Jenkins, S.K. Tiwari, J.D. Darby, D. Nyakash, W. Saenyi, K. Langenbach, The Biosand Filter for Improved Drinking Water Quality in High Risk Communities in the Njoro Watershed, Kenya, Research Brief, Global Livestock CRSP, University of California-Davis, Davis, CA, 2009. Available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle: The+BioSand+Filter+for+Improved+Drinking+Water+Quality+ in+high+Risk+Communities+in+the+Njoro+Watershed#0 (accessed June 21, 2020)
  48. T.O. Mahlangu, L. Mpenyana-Monyatsi, M.N.B. Momba, B.B. Mamba, A simplified cost-effective biosand filter (BSFZ) for removal of chemical contaminants from water, J. Chem. Eng. Mater. Sci., 2 (2011) 156–167.
  49. P. Servais, G. Billen, P. Bouillot, Biological activity in a granular actived carbon filter, Rev. Des Sci. l’Eau., 4 (1991) 483–498.
  50. B. Tansel, F. Vilar, Enhancement of media filter performance with coagulant use for treatment of diesel oil contaminated surface water, Desalination, 173 (2005) 69–76.
  51. R. Khalaphallah, Greywater Treatment for Reuse by Slow Sand Filtration: Study of Pathogenic Microorganisms and Phage Survival, Chem. Process Eng., Ecole des Mines de Nantes, 2012. Available at: https://tel.archives-ouvertes.fr/tel-00735857 (accessed June 21, 2020)
  52. S.M. Riley, D.C. Ahoor, T.Y. Cath, Enhanced biofiltration of O&G produced water comparing granular activated carbon and nutrients, Sci. Total Environ., 640–641 (2018) 419–428.
  53. T.B. Bagundol, A.L. Awa, M.R.C. Enguito, Efficiency of slow sand filter in purifying well water, J. Multidiscip. Stud., 2 (2013), https://doi.org/10.7828/jmds.v2i1.402.
  54. G.J. Williams, B. Sheikh, R.B. Holden, T.J. Kouretas, K.L. Nelson, The impact of increased loading rate on granular media, rapid depth filtration of wastewater, Water Res., 41 (2007) 4535–4545.
  55. N. Djedidi, A. Hassen, Proprietes physiques des sols et pouvoir colmatant des eaux usees en fonction de leur degre de traitement, Cah. - ORSTOM, Ser. Pedol., 26 (1991) 3–10. Available at: http://horizon.documentation.ird.fr/exl-doc/ pleins_textes/cahiers/PTP/35396.PDF (accessed June 21, 2020)
  56. K.D. Belaid, S. Kacha, Étude cinétique et thermodynamique de l’adsorption d’un colorant basique sur la sciure de bois, Rev. Des Sci. l’Eau., 24 (2011) 131–144.
  57. O.B. Yapo, V. Mambo, E.J.-C. Meledje Djedjess, M.J. Ohou, A. Seka, A.S. Tidou, P.V. Houenou, Searching for parameters optimising the biological denitrification of nitrate-and ammonium-rich well waters by private slow sand filtration reactors, Eur. J. Sci. Res., 26 (2009) 565–576. Available at: http:// www.eurojournals.com/ejsr.htm (accessed June 21, 2020)
  58. K.S. Nitzsche, P. Weigold, T. Lösekann-Behrens, A. Kappler, S. Behrens, Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam, Chemosphere, 138 (2015) 47–59.
  59. A. Andersson, P. Laurent, A. Kihn, M. Prévost, P. Servais, Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment, Water Res., 35 (2001) 2923–2934.
  60. A. Kihn, A. Andersson, P. Laurent, P. Servais, M. Prévost, Impact of filtration material on nitrification in biological filters used in drinking water production, J. Water Supply Res. Technol. AQUA, 51 (2002) 35–46.
  61. A. Torrens, P. Molle, C. Boutin, M. Salgot, Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent, Water Res., 43 (2009) 1851–1858.
  62. S.R. Smith, V. Woods, T.D. Evans, Nitrate dynamics in biosolids-treated soils. II. Thermal-time models of the different nitrogen pools, Bioresour. Technol., 66 (1998) 151–160.
  63. D.-W. Cho, C.-M. Chon, Y.J. Kim, B.-H. Jeon, F.W. Schwartz, E.-S. Lee, H. Song, Adsorption of nitrate and Cr(VI) by cationic polymer-modified granular activated carbon, Chem. Eng. J., 175 (2011) 298–305.
  64. O. Kheliel, A.E.K. Ouakouak, L. Youcef, S. Achour, Denitrification Des Eaux Souterraines Par Adsorption Sur Charbon Actif Et Par Coagulation-Floculation Au Sulfate D’Aluminium, LARHYSS J., (2015) 181–190.
  65. I. Bruch, J. Fritsche, D. Bänninger, U. Alewell, M. Sendelov, H. Hürlimann, R. Hasselbach, C. Alewell, Improving the treatment efficiency of constructed wetlands with zeolitecontaining filter sands, Bioresour. Technol., 102 (2011) 937–941.