References

  1. C.-q. Wang, X.-y. Lin, M. He, D. Wang, S.-l. Zhang, Environmental performance, mechanical and microstructure analysis of concrete containing oil-based drilling cuttings pyrolysis residues of shale gas, J. Hazard. Mater., 338 (2017) 410–427.
  2. H. Liu, J.B. Li, M. Zhao, Y.B. Li, Y.M. Chen, Remediation of oil-based drill cuttings using low-temperature thermal desorption: performance and kinetics modeling, Chemosphere, 235 (2019) 1081–1088.
  3. C.-q. Wang, J.-z. Jin, X.-y. Lin, D.-m. Xiong, X.-d. Mei, A study on the oil-based drilling cutting pyrolysis residue resource utilization by the exploration and development of shale gas, Environ. Sci. Pollut. Res., 24 (2017) 17816–17828.
  4. S. Wang, C.C. Zheng, J.H. Zhao, X.J. Li, H.S. Lu, Extracting and recovering diesel from oil-based drill cuttings using switchable hydrophilic solvents, Chem. Eng. Res. Des., 128 (2017) 27–36.
  5. Y. Ye, J.X. Li, Q.W. Zhang, J.Y. Feng, J.Z. Zhu, D. Yin, Nanoemulsion for oil-contaminated oil-based drill cuttings removel in lab, Int. J. Hydrogen Energy, 42 (2017) 18734–18740.
  6. R. Khanpour, M.R. Sheikhi-Kouhsar, F. Esmaeilzadeh, D. Mowla, Removal of contaminants from polluted drilling mud using supercritical carbon dioxide extraction, J. Supercrit. Fluids, 88 (2014) 1–7.
  7. N. Alavi, A.-R. Mesdaghinia, K. Naddafi, G. Mohebali, H. Daraei, A. Maleki, L. Alaei, Biodegradation of petroleum hydrocarbons in a soil polluted sample by oil-based drilling cuttings, Soil Sediment Contam.: Int. J., 23 (2014) 586–597.
  8. R.B. Kogbara, B.B. Dumkhana, J.M. Ayotamuno, R.N. Okparanma, Recycling stabilised/solidified drill cuttings for forage production in acidic soils, Chemosphere, 184 (2017) 652–663.
  9. J.P. Robinson, S.W. Kingman, C.E. Snape, R. Barranco, H. Shang, M.S.A. Bradley, S.M. Bradshaw, Remediation of oil-contaminated drill cuttings using continuous microwave heating, Chem. Eng. J., 152 (2009) 458–463.
  10. P. Yan, M. Lu, Y.M. Guan, W.M. Zhang, Z.Z. Zhang, Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment, Bioresour. Technol., 102 (2011) 10252–10259.
  11. W. Huang, Z. Zhou, Y. He, M. Yan, S. Xia, Resourses utilization of oil-based drilling cuttings vacuum pyrolysising in shale gas developing, Chin. J. Environ. Eng., 8 (2017) 4783–4788.
  12. Z.Q. Wang, Q.J. Guo, X.M. Liu, C.Q. Cao, Low temperature pyrolysis characteristics of oil sludge under various heating conditions, Energy Fuels, 21 (2007) 957–962.
  13. J.W. Yan, X.M. Jiang, X.X. Han, J.G. Liu, A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen, Fuel, 104 (2013) 307–317.
  14. Y.J. Hu, W.J. Yu, H. Wibowo, Y.Y. Xia, Y.J. Lu, M. Yan, Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures, Sci. Total Environ., 667 (2019) 263–270.
  15. L. Ding, Y.Q. Zhang, Z.Q. Wang, J.J. Huang, Y.T. Fang, Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char, Bioresour. Technol., 173 (2014) 11–20.
  16. J.H. Clark, F.E.I. Deswarte, Introduction to Chemicals from Biomass, John Wiley & Sons Ltd., 2015.
  17. P. Basu, Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, Academic Press, 2018.
  18. V. Dhyani, T. Bhaskar, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renewable Energy, 129 (2018) 695–716.
  19. F.-X. Collard, J. Blin, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renewable Sustainable Energy Rev., 38 (2014) 594–608.
  20. M. Sharifzadeh, C.J. Richard, K. Liu, K. Hellgardt, D. Chadwick, N. Shah, An integrated process for biomass pyrolysis oil upgrading: a synergistic approach, Biomass Bioenergy, 76 (2015) 108–117.
  21. K. Açıkalın, F. Karaca, E. Bolat, Pyrolysis of pistachio shell: effects of pyrolysis conditions and analysis of products, Fuel, 95 (2012) 169–177.
  22. E. Mura, O. Debono, A. Villot, F. Paviet, Pyrolysis of biomass in a semi-industrial scale reactor: study of the fuel-nitrogen oxidation during combustion of volatiles, Biomass Bioenergy, 59 (2013) 187–194.
  23. L. Baxter, Biomass-coal co-combustion: opportunity for affordable renewable energy, Fuel, 84 (2005) 1295–1302.
  24. C.C. Zhou, G.J. Liu, X.D. Wang, C.C. Qi, Co-combustion of bituminous coal and biomass fuel blends: thermochemical characterization, potential utilization and environmental advantage, Bioresour. Technol., 218 (2016) 418–427.
  25. G.W. Wang, J.L. Zhang, J.G. Shao, Z.J. Liu, G.H. Zhang, T. Xu, J. Guo, H.Y. Wang, R.S. Xu, H. Lin, Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Convers. Manage., 124 (2016) 414–426.
  26. M.V. Navarro, J.D. Martínez, R. Murillo, T. García, J.M. López, M.S. Callén, A.M. Mastral, Application of a particle model to pyrolysis. Comparison of different feedstock: plastic, tyre, coal and biomass, Fuel Process. Technol., 103 (2012) 1–8.
  27. R.M. Soncini, N.C. Means, N.T. Weiland, Co-pyrolysis of low rank coals and biomass: product distributions, Fuel, 112 (2013) 74–82.
  28. A.O. Aboyade, J.F. Görgens, M. Carrier, E.L. Meyer, J.H. Knoetze, Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues, Fuel Process. Technol., 106 (2013) 310–320.
  29. F. Abnisa, W.M.A. Wan Daud, A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil, Energy Convers. Manage., 87 (2014) 71–85.
  30. Z.Q. Wu, S.Z. Wang, J. Zhao, L. Chen, H.Y. Meng, Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal, Bioresour. Technol., 169 (2014) 220–228.
  31. G. Agarwal, B. Lattimer, Physicochemical, kinetic and energetic investigation of coal–biomass mixture pyrolysis, Fuel Process. Technol., 124 (2014) 174–187.
  32. S.L. Rowan, F. Wu, I.B. Celik, N.T. Weiland, Experimental investigation of char generated from co-pyrolysis of coal and Appalachian hardwoods, Fuel Process. Technol., 128 (2014) 354–358.
  33. S.G. Sahu, N. Chakraborty, P. Sarkar, Coal–biomass co-combustion: an overview, Renewable Sustainable Energy Rev., 39 (2014) 575–586.
  34. J. Kalembkiewicz, U. Chmielarz, Ashes from co-combustion of coal and biomass: new industrial wastes, Resour. Conserv. Recycl., 69 (2012) 109–121.
  35. G.K. Parshetti, A. Quek, R. Betha, R. Balasubramanian, TGA– FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal, Fuel Process. Technol., 118 (2014) 228–234.
  36. B.C. Lin, Q.X. Huang, Y. Chi, Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality, Fuel Process. Technol., 177 (2018) 275–282.
  37. J. Shao, Study on Synergy of Co-Pyrolysis of Lignin Alkaline and Oil Shale, Dissertation of Master, Northeast Dianli University, 2016. Available at: http://kns.cnki.net/KCMS/detail/detail. aspx?dbcode=CMFD&dbname=CMFD201602&filename =1016183096.nh&v=MDI5MzBSbUZ5L2hVcnJKVkYyNkd MS3dIZEhGcVpFYlBJUjhlWDFMdXhZUzdEaDFUM3 FUcldNMUZyQ1VSTEtmWXU= (accessed May 29, 2018)
  38. W.R. Shi, X.Z. Wang, C.M. Zhang, A.G. Feng, Z.S. Huang, Experimental study on gas content of adsorption and desorption in Fuling shale gas field, J. Pet. Sci. Eng., 180 (2019) 1069–1076.
  39. C. Chen, S.Q. Li, C.T. Yue, T. Kruttschnitt, E. Pruckner, Q. Yao, Lab-scale pyrolysis of oil sludge in continuous rotating reactor: mass/energy balance and product analysis, J. Chem. Ind. Eng. (China), 3 (2006) 650–657.
  40. B. Sun, P. Tan, C. Jia, H. Liu, Q. Wang, Study on the combustion process of oil shale by DSC, J. Northeast Dianli Univ. (Natural Science Edition), 28 (2008) 105–108.
  41. A.A. Salema, R.M.W. Ting, Y.K. Shang, Pyrolysis of blend (oil palm biomass and sawdust) biomass using TG-MS, Bioresour. Technol., 274 (2019) 439–446.
  42. Z. Song, Z. Zhong, B. Zhang, Z. Lv, K. Ding, Experimental study on catalytic co-pyrolysis of corn stalk and polypropylene, J. Zhejiang Univ. (Engineering Edition), 50 (2016) 333–340.
  43. A.K. Hossain, P.A. Davies, Pyrolysis liquids and gases as alternative fuels in internal combustion engines – a review, Renewable Sustainable Energy Rev., 21 (2013) 165–189.
  44. M.S. Masnadi, R. Habibi, J. Kopyscinski, J.M. Hill, X.T. Bi, C.J. Lim, N. Ellis, J.R. Grace, Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels, Fuel, 117 (2014) 1204–1214.
  45. S.R. Naqvi, R. Tariq, Z. Hameed, I. Ali, M. Naqvi, W.-H. Chen, S. Ceylan, H. Rashid, J. Ahmad, S.A. Taqvi, M. Shahbaz, Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats–Redfern method, Renewable Energy, 131 (2019) 854–860.
  46. M. Fernandez-Lopez, G.J. Pedrosa-Castro, J.L. Valverde, L. Sanchez-Silva, Kinetic analysis of manure pyrolysis and combustion processes, Waste Manage., 58 (2016) 230–240.