References
- S.W. Kim, M. Kim, W.Y. Lee, T. Hyeon, Fabrication of hollow
palladium spheres and their successful application to the
recyclable heterogeneous catalyst for suzuki coupling reactions,
J. Am. Chem. Soc., 124 (2002) 7642–7643.
- F. Caruso, Hollow capsule processing through colloidal
templating and self-assembly, Chem. Eur. J., 6 (2000) 413–419.
- M. Zhang, G. Gao, D.C. Zhao, Y.Z. Li, F.Q. Liu, Crystallization
and photovoltaic properties of titania-coated polystyrene
hybrid microspheres and their photocatalytic activity, J. Phys.
Chem. B, 109 (2005) 9411–9415.
- H. Nakamura, M. Ishii, A. Tsukigase, M. Harada, H. Nakano,
Close-packed colloidal crystalline arrays composed of
polystyrene latex coated with titania nanosheets, Langmuir,
21 (2005) 8918–8922.
- J. Li, H.C. Zeng, Size tuning, functionalization, and reactivation
of Au in TiO2 nanoreactors, Angew. Chem. Int. Ed., 44 (2005)
4342–4345.
- Y.Z. Li, H. Zhang, X.L. Hu, X.J. Zhao, M. Han, Efficient
visible-light-induced photocatalytic activity of a 3D-ordered
titania hybrid photocatalyst with a core/shell structure of
dye containing polymer/titania, J. Phys. Chem. C, 112 (2008)
14973–14979.
- K. Kondo, H. Yoshikawa, K. Awaga, M. Murayama, T. Mori,
K. Sunada, S. Bandow, S. Iijima, Preparation, photocatalytic
activities, and dye-sensitized solar-cell performance of
submicron scale TiO2 hollow spheres, Langmuir, 24 (2008)
547–550.
- G.S. Nascimento, G.P. Mambrini, E.C. Paris, J.A. Peres,
L.A. Colnago, C. Ribeiro, Evaluation of the catalytic activity
of oxide nanoparticles synthesized by the polymeric precursor
method on biodiesel production, J. Mater. Res., 27 (2012)
3020–3026.
- M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem
Rev., 93 (1993) 341–357.
- A.J. Moreira, A.C. Borges, L.F.C. Gouvea, T.C.O. MacLeod,
G.P.G. Freschi, The process of atrazine degradation, its
mechanism, and the formation of metabolites using UV and
UV/MW photolysis, J. Photochem. Photobiol., A, 347 (2017)
160–167.
- W.K. Wang, J.J. Chen, M. Gao, Y.X. Huang, X. Zhang, H.Q. Yu,
Photocatalytic degradation of atrazine by boron-doped TiO2
with a tunable rutile/anatase ratio, Appl. Catal., B, 195 (2016)
69–76.
- Y. Zhang, J. Li, L. Zhou, G. Wang, Y. Feng, Z. Wang, X. Yang,
Aqueous photodegradation of antibiotic florfenicol: kinetics
and degradation pathway studies. Environ. Sci. Pollut. Res.,
23 (2016) 6982–6989.
- H.W. Yu, T. Anumol, M. Park, I. Pepper, J. Scheideler,
S.A. Snyder, On-line sensor monitoring for chemical contaminant
attenuation during UV/H2O2 advanced oxidation
process, Water Res., 81 (2015) 250–260.
- C. Amorim, M.A. Keane, Effect of surface acid groups associated
with amorphous and structured carbon on the catalytic
hydrodechlorination of chlorobenzenes, Chem. Technol.
Biotechnol., 83 (2008) 662–672.
- G. Xiong, X. Wang, L.D. Lu, X.J. Yang, Y.F. Xu, Preparation and
characterization of Al2O3–TiO2 composite oxide nanocrystals,
J. Solid State Chem., 141 (1998) 70–77.
- V.R. Mendonça, C. Ribeiro, Influence of TiO2 morphological
parameters in dye photodegradation: a comparative study in
peroxo-based synthesis, Appl. Catal., B, 105 (2011) 298–305.
- T.R. Giraldi, G.V.F. Santos, V.R. Mendonça, C. Ribeiro,
I.T. Weber, Effect of synthesis parameters on the structural
characteristics and photocatalytic activity of ZnO, Mater. Chem.
Phys., 136 (2012) 505–511.
- M. Anpo, Use of visible light. Second-generation titanium oxide
photocatalysts prepared by the application of an advanced
metal ion-implantation method, Pure Appl. Chem., 72 (2000)
1787–1792.
- A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki,
S. Ikeda, B. Ohtani, Preparation of polycrystalline TiO2
photocatalysts impregnated with various transition metal ions:
characterization and photocatalytic activity for the degradation
of 4-nitrophenol, J. Phys. Chem. B, 106 (2002) 637–645.
- C.S. Enache, J. Schoonman, R.V. Krol, Addition of carbon to
anatase TiO2 by n-hexane treatment—surface or bulk doping?
Appl. Surf. Sci., 252 (2006) 6342–6349.
- M. Janus, B. Tryba, M. Inagaki, A.W. Morawski, New
preparation of a carbon-TiO2 photocatalyst by carbonization of
n-hexane deposited on TiO2, Appl. Catal., B, 52 (2004) 61–67.
- A. Abdelhaleem, W. Chu, Photodegradation of 4-chlorophenoxyacetic
acid under visible LED activated N-doped TiO2
and the mechanism of stepwise rate increment of the reused
catalyst, J. Hazard. Mater., 338 (2017) 491–501.
- I. Jang, H.J. Leong, H. Noh, T. Rang, S. Kong, S.G. Oh,
Preparation of N-functionalized TiO2 particles using one-step
sol–gel method and their photocatalytic activity, J. Ind. Eng.
Chem., 37 (2016) 380–389.
- T. Umebayashi, T. Yamaki, H. Itoh, K. Assai, Band gap
narrowing of titanium dioxide by sulfur doping, Appl. Phys.
Lett., 81 (2002) 454–456.
- T. Ohno, Preparation of visible light active S-doped TiO2
photocatalysts and their photocatalytic activities, Water Sci.
Technol., 49 (2004) 159–163.
- I.T. Weber, A. Valentini, L.F.D. Probst, E. Longo, E.R. Leite,
Influence of noble metals on the structural and catalytic
properties of Ce-doped SnO2 systems, Sens. Actuators, B,
97 (2004) 31–38.
- D.A. Duarte, M. Massi, A.S.S. Sobrinho, Development of dyesensitized
solar cells with sputtered N-doped thin films: from
modeling the growth mechanism of the films to fabrication
of the solar cells, Int. J. Photoenergy, 2014 (2014) 13 p,
doi: 10.1155/2014/839757.
- D.W. Chen, A.K. Ray, Photocatalytic kinetics of phenol and its
derivatives over UV irradiated TiO2, Appl. Catal., B, 23 (1999)
143–157.
- A. Fujishima, N. Rao, D.A. Tryk, Titanium dioxide
photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
- S.H. Bossmann, S. Göb, T. Siegenthaler, A.M. Braun,
K.T. Ranjit, I. Willner, An N,N′-dialkyl-4,4′- bipyridiniummodified
titanium-dioxide photocatalyst for water remediation
– observation and application of supramolecular effects in
photocatalytic degradation of π-donor organic compounds,
Fresenius J. Anal. Chem., 371 (2001) 621–628.
- I.G. Juan, L. Macé, S. Tengeler, A. Mosallem, N. Nicoloso,
R. Riedel, Photoluminescence of urea- and urea/rhodamine
B-capped TiO2 nanoparticles, Mater. Chem. Phys., 177 (2016)
472–478.
- B. Yao, C. Peng, P. Lu, Y. He, W. Zhang, Q. Zhang, Fabrication of
Tiron-TiO2 charge-transfer complex with excelente visible-light
photocatalytic performance, Mater. Chem. Phys., 184 (2016)
298–305.
- B. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water,
Appl. Catal., B, 41 (2003) 427–433.
- L.S. Xing, Z.F. Ying, C.W. Lian, H.A. Qin, X.Y. Kun, Surface
modification of nanometer size TiO2 with salicylic acid for
photocatalytic degradation of 4-nitrophenol, J. Hazard. Mater.,
135 (2006) 431–436.
- K. Hadjiivanov, V. Bushev, M. Kantcheva, D. Klissurski,
Infrared spectroscopy study of the species arising during NO2
adsorption on TiO2 (Anatase), Langmuir, 10 (1994) 464–471.
- L. Zhang, J.M. Cole, Can nitro groups really anchor onto TiO2?
Case study of dye-to-TiO2 adsorption using azo dyes with NO2
substituents, Phys. Chem. Chem. Phys., 18 (2016) 19062–9069.
- Z. Pap, L. Baia, K. Mogyorósi, A. Dombi, A. Oszkó, V. Danciu,
Correlating the visible light photoactivity of N-doped TiO2 with
brookite particle size and bridged-nitro surface species, Catal.
Commun., 17 (2012) 1–7.
- V.H.O. Silva, A.P.S. Batista, A.C.S. Teixeira, S.I. Borrely,
Degradation and acute toxicity removal of the antidepressant
Fluoxetine (Prozac®) in aqueous systems by electron beam
irradiation, Environ. Sci. Pollut. Res., 23 (2016) 11927–11936.
- D.C. Thompson, K. Perera, R. London, Spontaneous hydrolysis
of 4-trifluoromethylphenol to a quinone methide and
subsequent protein alkylation, Chem. Biol. Interact., 126 (2000)
1–14.
- H. Hidaka, T. Tsukamoto, T. Oyama, Y. Mitsutsuka, T. Takamura,
N. Serpone, Photoassisted defluorination of fluorinated
substrates and pharmaceuticals by a wide bandgap metal
oxide in aqueous media, Photochem. Photobiol. Sci., 12 (2013)
751–759.
- B.V. Pinto, A.P.G. Ferreira, E.T.G. Cavalheiro, A mechanism
proposal for fluoxetine thermal decomposition, J. Therm.
Anal. Calorim., 130 (2017) 1553–1559.
- L. Yin, R. Ma, B. Wang, H. Yuan, G. Yu, The degradation and
persistence of five pharmaceuticals in an artificial climate
incubator during a one year period, RSC Adv., 7 (2017)
8280–8287.
- W.L. Silva, M.A. Lansarin, P.R. Livotto, J.H.Z. Santos,
Photocatalytic degradation of drugs by supported titania-based
catalysts produced from petrochemical plant residue, Powder
Technol., 279 (2015) 166–172.
- M.A. Sousa, C. Gonçalves, V.J.P. Vilar, R.A.R. Boaventura,
M.F. Alpendurada, Suspended TiO2-assisted photocatalytic
degradation of emerging contaminants in a municipal WWTP
effluent using a solar pilot plant with CPCs, Chem. Eng. J., 198–
199 (2012) 301–309.
- N.F.F. Moreira, J.M. Sousa, G. Macedo, A.R. Ribeiro,
L. Barreiros, M. Pedrosa, J.L. Faria, M.F.R. Pereira, S.C. Silva,
M.A. Segundo, C.M. Manaia, O.C. Nunes, A.M.T. Silva,
Photocatalytic ozonation of urban wastewater and surface
water using immobilized TiO2 with LEDs: micropollutants,
antibiotic resistance genes and estrogenic activity, Water Res.,
94 (2016) 10–22.
- A. Hu, X. Zhang, D. Luong, K.D. Oakes, M.R. Servos, R. Liang,
R. Kurdi, P. Peng, Y. Zhou, Adsorption and photocatalytic
degradation kinetics of pharmaceuticals by TiO2 nanowires
during water treatment, Waste Biomass Valorization, 3 (2012)
443–449.
- M.F. Arriaga, T. Otsu, T. Oyama, J. Gimenes, S. Esplugas,
H. Hidaka, N. Serpone, Photooxidation of the antidepressant
drug Fluoxetine (Prozac) in aqueous media by hybrid catalytic/
ozonation processes, Water Res., 45 (2011) 2782–2794.
- Y. Zhao, G. Yu, S. Chen, S. Zhang, B. Wang, J. Huang, S. Deng,
Y. Wang, Ozonation of antidepressant fluoxetine and its
metabolite product norfluoxetine: kinetics, intermediates and
toxicity, Chem. Eng. J., 316 (2017) 951–963.
- C. Salazar, C. Ridruejo, E. Brillas, J. Yáñez, H.D. Mansilla,
I. Sirés, Abatement of the fluorinated antidepressant fluoxetine
(Prozac) and its reaction by-products by electrochemical
advanced methods, Appl. Catal., B, 203 (2017) 189–198.
- M. Lam, C. Young, S. Mabury, Aqueous photochemical reaction
kinetics and transformations of fluoxetine, Environ. Sci.
Technol., 39 (2005) 513–522.
- J.N. Sahu, A.V. Patwardhan, B.C. Meikap, In-situ catalytic
synthesis of ammonia from urea in a semi-batch reactor for
safe utilization in thermal power plant, Asia-Pac. J. Chem. Eng.,
5 (2010) 533–543.
- M.A. Kebede, M.E. Varner, N.K. Scharko, N.B. Gerber, J.D. Raff,
Photooxidation of ammonia on TiO2 as a source of NO and NO2
under atmospheric conditions, J. Am. Chem. Soc., 135 (2013)
8606–8615.
- M. Kakihana, Invited review “sol–gel” preparation of high
temperature superconducting oxides, J. Sol–Gel Sci. Technol.,
6 (1996) 7–55.
- G.B. Soares, B. Bravin, C.M.P. Vaza, C. Ribeiro, Facile synthesis
of N-doped TiO2 nanoparticles by a modified polymeric
precursor method and its photocatalytic properties, Appl.
Catal., B, 106 (2011) 287–294.
- R.M. Silverstain, F.X. Webster, D.J. Kiemle, Spectrometric
Identification of Organics Compounds, 7th ed., State University
of New York, New York, NY, 2005.
- P. Gonçalves, R. Bertholdo, J.A. Dias, S.C. Maestrrelli,
T.R. Giraldi, Evaluation of the photocatalytic potential of TiO2
and ZnO obtained by different wet chemical methods, Mater.
Res., 20 (2017) 181–189.
- V.R. Mendonça, H.A.J.L. Mourão, A.R. Malagutti, C. Ribeiro,
The role of the relative dye/photocatalyst concentration in TiO2
assisted photodegradation process, Photochem. Photobiol.,
90 (2014) 66–72.
- C. Wang, Y. Zhang, L. Yu, Z. Zhang, H. Sun, Oxidative
degradation of azo dyes using tourmaline, J. Hazard. Mater.,
260 (2013) 851–859.
- Y. Zhou, X.J. Zhang, Z. Zhao, Q. Zhang, F. Wang, Y. Lin,
Effects of pH on the visible-light induced photocatalytic and
photoelectrochemical performances of hierarchical Bi2WO6
microspheres, Superlattices Microstruct., 72 (2014) 238–244.
- R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li,
J. Yang, D.W. Bahnemann, J.H. Pan, Charge carrier trapping,
recombination and transfer during TiO2 photocatalysis: an
overview, Catal. Today, 30 (2019) 78–90.
- T.T.T. Do, U.P.N. Daoa, H.T. Buib, T.T Nguyen, Effect
of electrostatic interaction between fluoxetine and lipid
membranes on the partitioning of fluoxetine investigated using
second derivative spectrophotometry and FTIR, Chem. Phys.
Lipids, 207 (2017) 10–23.
- E.S. Papas, C.N. Chaldezos, J.A. Politou, M.A. Koupparis,
Construction of a fluoxetine ion chemical sensor and its
application for the determination of pka value of fluoxetine
conjugated acid, complexation study with b-cyclodextrin and
formulations assay, Anal. Lett., 43 (2010) 2171–2183.
- O. Rosseler, M. Sleiman, V.N. Montesinos, A. Shavorskiy,
V. Keller, N. Keller, M.I. Litter, H. Bluhm, M. Salmeron,
H. Destaillats, Chemistry of NOx on TiO2 surfaces studied by
ambient pressure XPS: products, effect of UV irradiation, water,
and coadsorbed K+, J. Phys. Chem. Lett., 4 (2013) 536–541.
- A.V. Tymtsunik, S.O. Kokhan, Y.M. Ivon, I.V. Komarov,
O.O. Grygorenko, Intramolecular functional group differentiation
as a strategy for the synthesis of bridged bicyclic
β-amino acids, RSC Adv., 6 (2016) 22737–22748.
- S.A. Snyder, S. Adham, A.M. Redding, F.S. Cannon, J. De
Carolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes
and activated carbon in the removal of endocrine disruptors
and pharmaceuticals, Desalination, 202 (2007) 156–181.
- M. Bedner, W.A. MacCrehan, Reactions of the amine-containing
drugs fluoxetine and metoprolol during chlorination and
dechlorination processes used in wastewater treatment,
Chemosphere, 65 (2006) 2130–2137.