References

  1. S.W. Kim, M. Kim, W.Y. Lee, T. Hyeon, Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions, J. Am. Chem. Soc., 124 (2002) 7642–7643.
  2. F. Caruso, Hollow capsule processing through colloidal templating and self-assembly, Chem. Eur. J., 6 (2000) 413–419.
  3. M. Zhang, G. Gao, D.C. Zhao, Y.Z. Li, F.Q. Liu, Crystallization and photovoltaic properties of titania-coated polystyrene hybrid microspheres and their photocatalytic activity, J. Phys. Chem. B, 109 (2005) 9411–9415.
  4. H. Nakamura, M. Ishii, A. Tsukigase, M. Harada, H. Nakano, Close-packed colloidal crystalline arrays composed of polystyrene latex coated with titania nanosheets, Langmuir, 21 (2005) 8918–8922.
  5. J. Li, H.C. Zeng, Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors, Angew. Chem. Int. Ed., 44 (2005) 4342–4345.
  6. Y.Z. Li, H. Zhang, X.L. Hu, X.J. Zhao, M. Han, Efficient visible-light-induced photocatalytic activity of a 3D-ordered titania hybrid photocatalyst with a core/shell structure of dye containing polymer/titania, J. Phys. Chem. C, 112 (2008) 14973–14979.
  7. K. Kondo, H. Yoshikawa, K. Awaga, M. Murayama, T. Mori, K. Sunada, S. Bandow, S. Iijima, Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron scale TiO2 hollow spheres, Langmuir, 24 (2008) 547–550.
  8. G.S. Nascimento, G.P. Mambrini, E.C. Paris, J.A. Peres, L.A. Colnago, C. Ribeiro, Evaluation of the catalytic activity of oxide nanoparticles synthesized by the polymeric precursor method on biodiesel production, J. Mater. Res., 27 (2012) 3020–3026.
  9. M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem Rev., 93 (1993) 341–357.
  10. A.J. Moreira, A.C. Borges, L.F.C. Gouvea, T.C.O. MacLeod, G.P.G. Freschi, The process of atrazine degradation, its mechanism, and the formation of metabolites using UV and UV/MW photolysis, J. Photochem. Photobiol., A, 347 (2017) 160–167.
  11. W.K. Wang, J.J. Chen, M. Gao, Y.X. Huang, X. Zhang, H.Q. Yu, Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio, Appl. Catal., B, 195 (2016) 69–76.
  12. Y. Zhang, J. Li, L. Zhou, G. Wang, Y. Feng, Z. Wang, X. Yang, Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies. Environ. Sci. Pollut. Res., 23 (2016) 6982–6989.
  13. H.W. Yu, T. Anumol, M. Park, I. Pepper, J. Scheideler, S.A. Snyder, On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process, Water Res., 81 (2015) 250–260.
  14. C. Amorim, M.A. Keane, Effect of surface acid groups associated with amorphous and structured carbon on the catalytic hydrodechlorination of chlorobenzenes, Chem. Technol. Biotechnol., 83 (2008) 662–672.
  15. G. Xiong, X. Wang, L.D. Lu, X.J. Yang, Y.F. Xu, Preparation and characterization of Al2O3–TiO2 composite oxide nanocrystals, J. Solid State Chem., 141 (1998) 70–77.
  16. V.R. Mendonça, C. Ribeiro, Influence of TiO2 morphological parameters in dye photodegradation: a comparative study in peroxo-based synthesis, Appl. Catal., B, 105 (2011) 298–305.
  17. T.R. Giraldi, G.V.F. Santos, V.R. Mendonça, C. Ribeiro, I.T. Weber, Effect of synthesis parameters on the structural characteristics and photocatalytic activity of ZnO, Mater. Chem. Phys., 136 (2012) 505–511.
  18. M. Anpo, Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method, Pure Appl. Chem., 72 (2000) 1787–1792.
  19. A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol, J. Phys. Chem. B, 106 (2002) 637–645.
  20. C.S. Enache, J. Schoonman, R.V. Krol, Addition of carbon to anatase TiO2 by n-hexane treatment—surface or bulk doping? Appl. Surf. Sci., 252 (2006) 6342–6349.
  21. M. Janus, B. Tryba, M. Inagaki, A.W. Morawski, New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2, Appl. Catal., B, 52 (2004) 61–67.
  22. A. Abdelhaleem, W. Chu, Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst, J. Hazard. Mater., 338 (2017) 491–501.
  23. I. Jang, H.J. Leong, H. Noh, T. Rang, S. Kong, S.G. Oh, Preparation of N-functionalized TiO2 particles using one-step sol–gel method and their photocatalytic activity, J. Ind. Eng. Chem., 37 (2016) 380–389.
  24. T. Umebayashi, T. Yamaki, H. Itoh, K. Assai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 81 (2002) 454–456.
  25. T. Ohno, Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities, Water Sci. Technol., 49 (2004) 159–163.
  26. I.T. Weber, A. Valentini, L.F.D. Probst, E. Longo, E.R. Leite, Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems, Sens. Actuators, B, 97 (2004) 31–38.
  27. D.A. Duarte, M. Massi, A.S.S. Sobrinho, Development of dyesensitized solar cells with sputtered N-doped thin films: from modeling the growth mechanism of the films to fabrication of the solar cells, Int. J. Photoenergy, 2014 (2014) 13 p, doi: 10.1155/2014/839757.
  28. D.W. Chen, A.K. Ray, Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, Appl. Catal., B, 23 (1999) 143–157.
  29. A. Fujishima, N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
  30. S.H. Bossmann, S. Göb, T. Siegenthaler, A.M. Braun, K.T. Ranjit, I. Willner, An N,N′-dialkyl-4,4′- bipyridiniummodified titanium-dioxide photocatalyst for water remediation – observation and application of supramolecular effects in photocatalytic degradation of π-donor organic compounds, Fresenius J. Anal. Chem., 371 (2001) 621–628.
  31. I.G. Juan, L. Macé, S. Tengeler, A. Mosallem, N. Nicoloso, R. Riedel, Photoluminescence of urea- and urea/rhodamine B-capped TiO2 nanoparticles, Mater. Chem. Phys., 177 (2016) 472–478.
  32. B. Yao, C. Peng, P. Lu, Y. He, W. Zhang, Q. Zhang, Fabrication of Tiron-TiO2 charge-transfer complex with excelente visible-light photocatalytic performance, Mater. Chem. Phys., 184 (2016) 298–305.
  33. B. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water, Appl. Catal., B, 41 (2003) 427–433.
  34. L.S. Xing, Z.F. Ying, C.W. Lian, H.A. Qin, X.Y. Kun, Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol, J. Hazard. Mater., 135 (2006) 431–436.
  35. K. Hadjiivanov, V. Bushev, M. Kantcheva, D. Klissurski, Infrared spectroscopy study of the species arising during NO2 adsorption on TiO2 (Anatase), Langmuir, 10 (1994) 464–471.
  36. L. Zhang, J.M. Cole, Can nitro groups really anchor onto TiO2? Case study of dye-to-TiO2 adsorption using azo dyes with NO2 substituents, Phys. Chem. Chem. Phys., 18 (2016) 19062–9069.
  37. Z. Pap, L. Baia, K. Mogyorósi, A. Dombi, A. Oszkó, V. Danciu, Correlating the visible light photoactivity of N-doped TiO2 with brookite particle size and bridged-nitro surface species, Catal. Commun., 17 (2012) 1–7.
  38. V.H.O. Silva, A.P.S. Batista, A.C.S. Teixeira, S.I. Borrely, Degradation and acute toxicity removal of the antidepressant Fluoxetine (Prozac®) in aqueous systems by electron beam irradiation, Environ. Sci. Pollut. Res., 23 (2016) 11927–11936.
  39. D.C. Thompson, K. Perera, R. London, Spontaneous hydrolysis of 4-trifluoromethylphenol to a quinone methide and subsequent protein alkylation, Chem. Biol. Interact., 126 (2000) 1–14.
  40. H. Hidaka, T. Tsukamoto, T. Oyama, Y. Mitsutsuka, T. Takamura, N. Serpone, Photoassisted defluorination of fluorinated substrates and pharmaceuticals by a wide bandgap metal oxide in aqueous media, Photochem. Photobiol. Sci., 12 (2013) 751–759.
  41. B.V. Pinto, A.P.G. Ferreira, E.T.G. Cavalheiro, A mechanism proposal for fluoxetine thermal decomposition, J. Therm. Anal. Calorim., 130 (2017) 1553–1559.
  42. L. Yin, R. Ma, B. Wang, H. Yuan, G. Yu, The degradation and persistence of five pharmaceuticals in an artificial climate incubator during a one year period, RSC Adv., 7 (2017) 8280–8287.
  43. W.L. Silva, M.A. Lansarin, P.R. Livotto, J.H.Z. Santos, Photocatalytic degradation of drugs by supported titania-based catalysts produced from petrochemical plant residue, Powder Technol., 279 (2015) 166–172.
  44. M.A. Sousa, C. Gonçalves, V.J.P. Vilar, R.A.R. Boaventura, M.F. Alpendurada, Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs, Chem. Eng. J., 198– 199 (2012) 301–309.
  45. N.F.F. Moreira, J.M. Sousa, G. Macedo, A.R. Ribeiro, L. Barreiros, M. Pedrosa, J.L. Faria, M.F.R. Pereira, S.C. Silva, M.A. Segundo, C.M. Manaia, O.C. Nunes, A.M.T. Silva, Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: micropollutants, antibiotic resistance genes and estrogenic activity, Water Res., 94 (2016) 10–22.
  46. A. Hu, X. Zhang, D. Luong, K.D. Oakes, M.R. Servos, R. Liang, R. Kurdi, P. Peng, Y. Zhou, Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment, Waste Biomass Valorization, 3 (2012) 443–449.
  47. M.F. Arriaga, T. Otsu, T. Oyama, J. Gimenes, S. Esplugas, H. Hidaka, N. Serpone, Photooxidation of the antidepressant drug Fluoxetine (Prozac) in aqueous media by hybrid catalytic/ ozonation processes, Water Res., 45 (2011) 2782–2794.
  48. Y. Zhao, G. Yu, S. Chen, S. Zhang, B. Wang, J. Huang, S. Deng, Y. Wang, Ozonation of antidepressant fluoxetine and its metabolite product norfluoxetine: kinetics, intermediates and toxicity, Chem. Eng. J., 316 (2017) 951–963.
  49. C. Salazar, C. Ridruejo, E. Brillas, J. Yáñez, H.D. Mansilla, I. Sirés, Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods, Appl. Catal., B, 203 (2017) 189–198.
  50. M. Lam, C. Young, S. Mabury, Aqueous photochemical reaction kinetics and transformations of fluoxetine, Environ. Sci. Technol., 39 (2005) 513–522.
  51. J.N. Sahu, A.V. Patwardhan, B.C. Meikap, In-situ catalytic synthesis of ammonia from urea in a semi-batch reactor for safe utilization in thermal power plant, Asia-Pac. J. Chem. Eng., 5 (2010) 533–543.
  52. M.A. Kebede, M.E. Varner, N.K. Scharko, N.B. Gerber, J.D. Raff, Photooxidation of ammonia on TiO2 as a source of NO and NO2 under atmospheric conditions, J. Am. Chem. Soc., 135 (2013) 8606–8615.
  53. M. Kakihana, Invited review “sol–gel” preparation of high temperature superconducting oxides, J. Sol–Gel Sci. Technol., 6 (1996) 7–55.
  54. G.B. Soares, B. Bravin, C.M.P. Vaza, C. Ribeiro, Facile synthesis of N-doped TiO2 nanoparticles by a modified polymeric precursor method and its photocatalytic properties, Appl. Catal., B, 106 (2011) 287–294.
  55. R.M. Silverstain, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organics Compounds, 7th ed., State University of New York, New York, NY, 2005.
  56. P. Gonçalves, R. Bertholdo, J.A. Dias, S.C. Maestrrelli, T.R. Giraldi, Evaluation of the photocatalytic potential of TiO2 and ZnO obtained by different wet chemical methods, Mater. Res., 20 (2017) 181–189.
  57. V.R. Mendonça, H.A.J.L. Mourão, A.R. Malagutti, C. Ribeiro, The role of the relative dye/photocatalyst concentration in TiO2 assisted photodegradation process, Photochem. Photobiol., 90 (2014) 66–72.
  58. C. Wang, Y. Zhang, L. Yu, Z. Zhang, H. Sun, Oxidative degradation of azo dyes using tourmaline, J. Hazard. Mater., 260 (2013) 851–859.
  59. Y. Zhou, X.J. Zhang, Z. Zhao, Q. Zhang, F. Wang, Y. Lin, Effects of pH on the visible-light induced photocatalytic and photoelectrochemical performances of hierarchical Bi2WO6 microspheres, Superlattices Microstruct., 72 (2014) 238–244.
  60. R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li, J. Yang, D.W. Bahnemann, J.H. Pan, Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview, Catal. Today, 30 (2019) 78–90.
  61. T.T.T. Do, U.P.N. Daoa, H.T. Buib, T.T Nguyen, Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR, Chem. Phys. Lipids, 207 (2017) 10–23.
  62. E.S. Papas, C.N. Chaldezos, J.A. Politou, M.A. Koupparis, Construction of a fluoxetine ion chemical sensor and its application for the determination of pka value of fluoxetine conjugated acid, complexation study with b-cyclodextrin and formulations assay, Anal. Lett., 43 (2010) 2171–2183.
  63. O. Rosseler, M. Sleiman, V.N. Montesinos, A. Shavorskiy, V. Keller, N. Keller, M.I. Litter, H. Bluhm, M. Salmeron, H. Destaillats, Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water, and coadsorbed K+, J. Phys. Chem. Lett., 4 (2013) 536–541.
  64. A.V. Tymtsunik, S.O. Kokhan, Y.M. Ivon, I.V. Komarov, O.O. Grygorenko, Intramolecular functional group differentiation as a strategy for the synthesis of bridged bicyclic β-amino acids, RSC Adv., 6 (2016) 22737–22748.
  65. S.A. Snyder, S. Adham, A.M. Redding, F.S. Cannon, J. De Carolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination, 202 (2007) 156–181.
  66. M. Bedner, W.A. MacCrehan, Reactions of the amine-containing drugs fluoxetine and metoprolol during chlorination and dechlorination processes used in wastewater treatment, Chemosphere, 65 (2006) 2130–2137.