References
- A. Gohari, S. Eslamian, A. Mirchi, J. Abedi-Koupaei, Al. M.
Bavani, K. Madani, Water transfer as a solution to water
shortage: a fix that can Backfire, J. Hydrol., 491 (2013) 23–39.
- S.N. Gosling, N.W. Arnell, A global assessment of the impact
of climate change on water scarcity, Clim. Change, 134 (2016)
371–385
- G. Vlachos, J.K. Kaldellis, Application of a gas-turbine
exhausted gases to brackish water desalination. A technoeconomic
evaluation, Appl. Therm. Eng., 24 (2004) 2487–2500.
- J.K. Kaldellis, K. Kavadias, J. Garofalakis, Renewable Energy
Solution for Clean Water Production in the Aegean Archipelago
islands, Mediterranean Conference on Policies and Strategies
for Desalination and Renewable Energies, Santorini Island,
Greece, 2000.
- L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin,
Reverse osmosis desalination: water sources, technology, and
today’s challenges, Water Res., 43 (2009) 2317–2348.
- R. Dashtpour, S.N. Al-Zubaidy, Energy efficient reverse
osmosis desalination process, Int. J. Environ. Sci. Dev., 4 (2012)
339–345.
- C.A. Charcosset, A review of membrane processes and
renewable energies for desalination, Desalination, 245 (2009)
214–231.
- Y.-Y. Lu, Y.-D. Hu, X.-L. Zhang, L.-Y. Wu, Q.-Z. Liu, Optimum
design of reverse osmosis system under different feed
concentration and product specification, J. Membr. Sci., 287
(2007) 219–229.
- M.S. Atab, A.J. Smallbone, A.P. Roskilly, An operational and
economic study of a reverse osmosis desalination system for
potable water and land irrigation, Desalination, 397 (2016)
174–184.
- N. Ghaffour, S. Lattemann, T. Missimer, K. Choon, S. Sinha,
G. Amy, Renewable energy-driven innovative energy-efficient
desalination technologies, Appl. Energy, 136 (2014) 1155–1165.
- C.-S. Karavas, K.G. Arvanitis, G. Papadakis, Optimal technical
and economic configuration of photo voltaic powered reverse
osmosis desalination systems operating in autonomous mode,
Desalination, 466 (2019) 97–106.
- M.A. Abdelkareem, M.E. Assad, E.T. Sayed, B. Soudan, Recent
progress in the use of renewable energy sources to power water
desalination plants, Desalination, 435 (2018) 97–11.
- M.M. Salah, A.G. Abo-khalil, R.P. Praveen, Wind speed
characteristics and energy potential for selected sites in Saudi
Arabia, J. King Saud Univ. Eng. Sci., (2020), doi: 10.1016/j.
jksues.2019.12.006 (in press).
- M.S. Miranda, D.A. Infield, A wind-powered seawater reverseosmosis
system without batteries, Desalination, 153 (2002) 9–16.
- N. Pestana, F.J. Latorre, C.A. Espinoza, A.G. Gotor, Optimization
of RO desalination systems powered by renewable energies.
Part I: wind energy, Desalination, 160 (2004) 293–299.
- G.L. Park, A.I. Schafer, B.S. Richards, Renewable energy
powered membrane technology: the effect of wind speed
fluctuations on the performance of a wind-powered membrane
system for brackish water desalination, J. Membr. Sci., 370
(2011) 34–44.
- J.A. Carta, J. Gonzhlez, V. Subiela, The SDAWES project: an
ambitious R&D prototype for wind powered desalination,
Desalination, 161 (2004) 33–48.
- O. Charrouf, A. Betka, S. Abdeddaima, A. Ghamri, Artificial
neural network power manager for hybrid PV-wind desalination
system, Math. Comput. Simul., 167 (2020) 443–460.
- W. Peng, A. Maleki, M.A. Rosen, P. Azarikhah, Optimization
of a hybrid system for solar-wind-based water desalination
by reverse osmosis: comparison of approaches, Desalination,
442 (2018) 16–31.
- P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven
SWRO desalination prototype with and without batteries:
a performance simulation using machine learning models,
Desalination, 435 (2018) 77–96.
- W. Lai, Q. Ma, H. Lu, S. Weng, J. Fan, H. Fang, Effects of wind
intermittence and fluctuation on reverse osmosis desalination
process and solution strategies, Desalination, 395 (2016) 17–27.
- J.A. Carta, J. González, P. Cabrera, V.J. Subiela, Preliminary
experimental analysis of a small-scale prototype SWRO
desalination plant, designed for continuous adjustment of its
energy consumption to the widely varying power generated by
a stand-alone wind turbine, Appl. Energy, 137 (2015) 222–239.
- B.S. Richards, G.L. Park, T. Pietzsch, A.I. Schäfer, Renewable
energy powered membrane technology: Brackish water
desalination system operated using real wind fluctuations and
energy buffering, J. Membr. Sci., 468 (2014) 224–232.
- M.T. Mito, X. Ma, H. Albuflasa, P.A. Davies, Reverse osmosis
(RO) membrane desalination driven by wind and solar
photovoltaic (PV) energy: state of the art and challenges for
large-scale implementation, Renewable Sustainable Energy
Rev., 112 (2019) 669–685.
- M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid
renewable energy system as a potential energy source for
water desalination using reverse osmosis: a review, Renewable
Sustainable Energy Rev., 97 (2018) 456–477.
- R.E.H. Sims, H.-H Rognerb, K. Gregory, Carbon emission and
mitigation cost comparisons between fossil fuel, Energy Policy,
31 (2003) 1315–1326.
- J. Marriott, E.A. Sorensen, A general approach to modelling
membrane modules, Chem. Eng. Sci., 58 (2003) 4975–4990.
- F. Vince, F. Marechal, E. Aoustin, P. Bréant, Multi-objective
optimization of RO desalination plants, Desalination, 222 (2008)
96–118.
- T.K. Sherwood, P.L.T. Brian, Fischer reverse desalination by
reverse osmosis, Ind. Eng. Chem. Fundam., 6 (1967) 2–12.
- R. Rautenbach, Process Design and Optimization, P.M. Bungay,
H.K. Lonsdale, M.N. de Pinho, Eds., Synthetic Membranes:
Science, Engineering and Applications, Kluwer, New York, NY,
1986.
- A.R. Da Costa, A.G. Fane, D.E. Wiley, Spacer characterization
and pressure drop modelling in spacer-filled channels for
ultrafiltration, J. Membr. Sci., 87 (1994) 79–98.
- S. Sourirajan, Reverse Osmosis, Academic Press, New York,
NY, 1970.
- N. Al-Bastaki, A. Abbas, Permeate recycle to improve the
performance of a spiral-wound RO plant, Desalination,
158 (2003) 119–126.
- Hydranautics. Available at: https://membranes.com/docs/trc/
Dsgn_Lmt.pdf (accessed February 14, 2020)
- Available at: http://population.city/saudi-arabia/arar/ (accessed
February 14, 2020).
- General Authority of Statistics. Available at: https://www.stats.
gov.sa/ar/3123 (accessed February 14, 2020)
- S.H. Alawaji, N.N. Eugenio, U.A. Elani, Wind energy resource
assessment in Saudi Arabia: Part II: Data collection and
analysis, Renewable Energy, 9 (1996) 818–821.
- NREL, Integrated Wind Energy/Desalination System. Available
at: https://www.nrel.gov/docs/fy07osti/39485.pdf (accessed
February 14, 2020)
- A.S. Stillwell, M.E. Webber, Predicting the specific energy
consumption of reverse osmosis desalination, Water, 8 (2016)
1–18, doi: 10.3390/w8120601.
- W. Khiari, M. Turki, J. Belhadj, Power control strategy for PV/
Wind reverse osmosis desalination without battery, Control
Eng. Pract., 89 (2019) 169–179.
- A. Al-Naeem, Monitoring of groundwater salinity for water
resources management in irrigated areas of Al-Jouf region,
Saudi Arabia, Res. J. Environ. Sci., 9 (2015) 256–269.
- G. Srivathsan, Modeling of Fluid Flow in Spiral Wound Reverse
Osmosis Membranes, Ph.D Thesis, University of Minnesota,
USA, 2013.
- Z. Triki, Etudes Analyses et Optimisation de la Consommation
Énergétique des Unités de Dessalement Pour les Sites Isolés,
Ph.D Thesis, Universite of Constantine, Algeria, 2014.