References

  1. A. Gohari, S. Eslamian, A. Mirchi, J. Abedi-Koupaei, Al. M. Bavani, K. Madani, Water transfer as a solution to water shortage: a fix that can Backfire, J. Hydrol., 491 (2013) 23–39.
  2. S.N. Gosling, N.W. Arnell, A global assessment of the impact of climate change on water scarcity, Clim. Change, 134 (2016) 371–385
  3. G. Vlachos, J.K. Kaldellis, Application of a gas-turbine exhausted gases to brackish water desalination. A technoeconomic evaluation, Appl. Therm. Eng., 24 (2004) 2487–2500.
  4. J.K. Kaldellis, K. Kavadias, J. Garofalakis, Renewable Energy Solution for Clean Water Production in the Aegean Archipelago islands, Mediterranean Conference on Policies and Strategies for Desalination and Renewable Energies, Santorini Island, Greece, 2000.
  5. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  6. R. Dashtpour, S.N. Al-Zubaidy, Energy efficient reverse osmosis desalination process, Int. J. Environ. Sci. Dev., 4 (2012) 339–345.
  7. C.A. Charcosset, A review of membrane processes and renewable energies for desalination, Desalination, 245 (2009) 214–231.
  8. Y.-Y. Lu, Y.-D. Hu, X.-L. Zhang, L.-Y. Wu, Q.-Z. Liu, Optimum design of reverse osmosis system under different feed concentration and product specification, J. Membr. Sci., 287 (2007) 219–229.
  9. M.S. Atab, A.J. Smallbone, A.P. Roskilly, An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation, Desalination, 397 (2016) 174–184.
  10. N. Ghaffour, S. Lattemann, T. Missimer, K. Choon, S. Sinha, G. Amy, Renewable energy-driven innovative energy-efficient desalination technologies, Appl. Energy, 136 (2014) 1155–1165.
  11. C.-S. Karavas, K.G. Arvanitis, G. Papadakis, Optimal technical and economic configuration of photo voltaic powered reverse osmosis desalination systems operating in autonomous mode, Desalination, 466 (2019) 97–106.
  12. M.A. Abdelkareem, M.E. Assad, E.T. Sayed, B. Soudan, Recent progress in the use of renewable energy sources to power water desalination plants, Desalination, 435 (2018) 97–11.
  13. M.M. Salah, A.G. Abo-khalil, R.P. Praveen, Wind speed characteristics and energy potential for selected sites in Saudi Arabia, J. King Saud Univ. Eng. Sci., (2020), doi: 10.1016/j. jksues.2019.12.006 (in press).
  14. M.S. Miranda, D.A. Infield, A wind-powered seawater reverseosmosis system without batteries, Desalination, 153 (2002) 9–16.
  15. N. Pestana, F.J. Latorre, C.A. Espinoza, A.G. Gotor, Optimization of RO desalination systems powered by renewable energies. Part I: wind energy, Desalination, 160 (2004) 293–299.
  16. G.L. Park, A.I. Schafer, B.S. Richards, Renewable energy powered membrane technology: the effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination, J. Membr. Sci., 370 (2011) 34–44.
  17. J.A. Carta, J. Gonzhlez, V. Subiela, The SDAWES project: an ambitious R&D prototype for wind powered desalination, Desalination, 161 (2004) 33–48.
  18. O. Charrouf, A. Betka, S. Abdeddaima, A. Ghamri, Artificial neural network power manager for hybrid PV-wind desalination system, Math. Comput. Simul., 167 (2020) 443–460.
  19. W. Peng, A. Maleki, M.A. Rosen, P. Azarikhah, Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: comparison of approaches, Desalination, 442 (2018) 16–31.
  20. P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven SWRO desalination prototype with and without batteries: a performance simulation using machine learning models, Desalination, 435 (2018) 77–96.
  21. W. Lai, Q. Ma, H. Lu, S. Weng, J. Fan, H. Fang, Effects of wind intermittence and fluctuation on reverse osmosis desalination process and solution strategies, Desalination, 395 (2016) 17–27.
  22. J.A. Carta, J. González, P. Cabrera, V.J. Subiela, Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alone wind turbine, Appl. Energy, 137 (2015) 222–239.
  23. B.S. Richards, G.L. Park, T. Pietzsch, A.I. Schäfer, Renewable energy powered membrane technology: Brackish water desalination system operated using real wind fluctuations and energy buffering, J. Membr. Sci., 468 (2014) 224–232.
  24. M.T. Mito, X. Ma, H. Albuflasa, P.A. Davies, Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: state of the art and challenges for large-scale implementation, Renewable Sustainable Energy Rev., 112 (2019) 669–685.
  25. M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: a review, Renewable Sustainable Energy Rev., 97 (2018) 456–477.
  26. R.E.H. Sims, H.-H Rognerb, K. Gregory, Carbon emission and mitigation cost comparisons between fossil fuel, Energy Policy, 31 (2003) 1315–1326.
  27. J. Marriott, E.A. Sorensen, A general approach to modelling membrane modules, Chem. Eng. Sci., 58 (2003) 4975–4990.
  28. F. Vince, F. Marechal, E. Aoustin, P. Bréant, Multi-objective optimization of RO desalination plants, Desalination, 222 (2008) 96–118.
  29. T.K. Sherwood, P.L.T. Brian, Fischer reverse desalination by reverse osmosis, Ind. Eng. Chem. Fundam., 6 (1967) 2–12.
  30. R. Rautenbach, Process Design and Optimization, P.M. Bungay, H.K. Lonsdale, M.N. de Pinho, Eds., Synthetic Membranes: Science, Engineering and Applications, Kluwer, New York, NY, 1986.
  31. A.R. Da Costa, A.G. Fane, D.E. Wiley, Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87 (1994) 79–98.
  32. S. Sourirajan, Reverse Osmosis, Academic Press, New York, NY, 1970.
  33. N. Al-Bastaki, A. Abbas, Permeate recycle to improve the performance of a spiral-wound RO plant, Desalination, 158 (2003) 119–126.
  34. Hydranautics. Available at: https://membranes.com/docs/trc/ Dsgn_Lmt.pdf (accessed February 14, 2020)
  35. Available at: http://population.city/saudi-arabia/arar/ (accessed February 14, 2020).
  36. General Authority of Statistics. Available at: https://www.stats. gov.sa/ar/3123 (accessed February 14, 2020)
  37. S.H. Alawaji, N.N. Eugenio, U.A. Elani, Wind energy resource assessment in Saudi Arabia: Part II: Data collection and analysis, Renewable Energy, 9 (1996) 818–821.
  38. NREL, Integrated Wind Energy/Desalination System. Available at: https://www.nrel.gov/docs/fy07osti/39485.pdf (accessed February 14, 2020)
  39. A.S. Stillwell, M.E. Webber, Predicting the specific energy consumption of reverse osmosis desalination, Water, 8 (2016) 1–18, doi: 10.3390/w8120601.
  40. W. Khiari, M. Turki, J. Belhadj, Power control strategy for PV/ Wind reverse osmosis desalination without battery, Control Eng. Pract., 89 (2019) 169–179.
  41. A. Al-Naeem, Monitoring of groundwater salinity for water resources management in irrigated areas of Al-Jouf region, Saudi Arabia, Res. J. Environ. Sci., 9 (2015) 256–269.
  42. G. Srivathsan, Modeling of Fluid Flow in Spiral Wound Reverse Osmosis Membranes, Ph.D Thesis, University of Minnesota, USA, 2013.
  43. Z. Triki, Etudes Analyses et Optimisation de la Consommation Énergétique des Unités de Dessalement Pour les Sites Isolés, Ph.D Thesis, Universite of Constantine, Algeria, 2014.