References

  1. R. He, B.H. Tian, Q.Q. Zhang, H.T. Zhang, Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process, Waste Manage., 38 (2015) 232–239.
  2. Q.-Q. Zhang, B.-H. Tian, X. Zhang, A. Ghulam, C.-R. Fang, R. He, Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants, Waste Manage., 33 (2013) 2277–2286.
  3. B.O. Clarke, T. Anumol, M. Barlaz, S.A. Snyder, Investigating landfill leachate as a source of trace organic pollutants, Chemosphere, 127 (2015) 269–275.
  4. F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, Wiley, New York, 1994.
  5. P.S. Calabrò, S. Sbaffoni, S. Orsi, E. Gentili, C. Meoni, The landfill reinjection of concentrated leachate: findings from a monitoring study at an Italian site, J. Hazard. Mater., 181 (2010) 962–968.
  6. Y. Deng, J.D. Englehardt, Electrochemical oxidation for landfill leachate treatment, Waste Manage., 27 (2007) 380–388.
  7. S.Y. Hunce, D. Akgul, G. Demir, B. Mertoglu, Solidification/stabilization of landfill leachate concentrate using different aggregate materials, Waste Manage., 32 (2012) 1394–1400.
  8. X.Y. Li, L.W. Zhang, C.W. Wang, Review of disposal of concentrate streams from nanofiltration (NF) or reverse osmosis (RO) membrane process, Adv. Mater. Res., (2012) 3470–3475.
  9. G. Pérez, J. Saiz, R. Ibañez, A.M. Urtiaga, I. Ortiz, Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates, Water Res., 46 (2012) 2579–2590.
  10. W.-W. Tang, G.-M. Zeng, J.-L. Gong, J. Liang, P. Xu, C. Zhang, B.-B. Huang, Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review, Sci. Total Environ., 468–469 (2014) 1014–1027.
  11. X. Qi, C. Zhang, Y. Zhang, Treatment of Landfill Leachate RO Concentrate by VMD, International Conference on Circuits and Systems (CAS 2015), Paris, France.
  12. I.A. Tałałaj, Release of heavy metals on selected municipal landfill during the calendar year, Rocz. Ochr. Sr., 16 (2014) 404–420.
  13. S. Chen, D. Sun, J.-S. Chung, Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system, Waste Manage., 28 (2008) 339–346.
  14. C. Fang, K. Boe, I. Angelidaki, Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition, Bioresour. Technol., 102 (2011) 1005–1011.
  15. Y.Y. Long, J. Xu, D.S. Shen, Y. Du, H.J. Feng, Effective removal of contaminants in landfill leachate membrane concentrates by coagulation, Chemosphere, 167 (2017) 512–519.
  16. C. Amor, E. De Torres-Socías, J.A. Peres, M.I. Maldonado, I. Oller, S. Malato, M.S. Lucas, Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes, J. Hazard. Mater., 286 (2015) 261–268.
  17. S.K. Singh, W.Z. Tang, Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment, Waste Manage., 33 (2013) 81–88.
  18. H.W. Wang, Y.-N. Wang, X.Y. Li, Y.J. Sun, H. Wu, D. Chen, Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment, Waste Manage., 56 (2016) 271–279.
  19. S.E.H. Comstock, T.H. Boyer, K.C. Graf, Treatment of nanofiltration and reverse osmosis concentrates: comparison of precipitative softening, coagulation, and anion exchange, Water Res., 45 (2011) 4855–4865.
  20. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  21. R. Munter, Advanced oxidation processes – current status and prospect, Proc. Estonian Acad. Sci. Chem., 50 (2001) 59–80.
  22. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Env. Sci. Technol., 36 (2006) 1–84.
  23. S. Mohajeri, H.A. Aziz, M.H. Isa, M.A. Zahed, M.N. Adlan, Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique, J. Hazard. Mater., 176 (2010) 749–758.
  24. X.X. Jiang, Y.L. Wu, P. Wang, H.J. Li, W.B. Dong, Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion, Environ. Sci. Pollut. Res., 20 (2013) 4947–4953.
  25. Y.-H. Guan, J. Ma, Y.-M. Ren, Y.-L. Liu, J.-Y. Xiao, L.-Q. Lin, C. Zhang, Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals, Water Res., 47 (2013) 5431–5438.
  26. R. Yuan, S.N. Ramjaun, Z. Wang, J. Liu, Effects of chloride ion on degradation of Acid orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds, J. Hazard. Mater., 196 (2011) 173–179.
  27. P. Nfodzo, H. Choi, Triclosan decomposition by sulfate radicals: effects of oxidant and metal doses, Chem. Eng. J., 174 (2011) 629–634.
  28. A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radicalbased ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal., B, 85 (2009) 171–179.
  29. J.G. Huang, J.J. Chen, Z.M. Xie, X.J. Xu, Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide, Environ. Technol., 36 (2015) 1001–1007.
  30. R.L. Johnson, P.G. Tratnyek, R.O.B. Johnson, Persulfate persistence under thermal activation conditions, Environ. Sci. Technol., 42 (2008) 9350–9356.
  31. V.C. Mora, J.A. Rosso, G. Carrillo Le Roux, D.O. Mártire, M.C. Gonzalez, Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants, Chemosphere, 75 (2009) 1405–1409.
  32. C. Liang, C.J. Bruell, Thermally activated persulfate oxidation of trichloroethylene: experimental investigation of reaction orders, Ind. Eng. Chem. Res., 47 (2008) 2912–2918.
  33. H. Zhang, Z. Wang, C.C. Liu, Y.Z. Guo, N. Shan, C.X. Meng, L.Y. Sun, Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process, Chem. Eng. J., 250 (2014) 76–82.
  34. G.P. Anipsitakis, D.D. Dionysiou, M.A. Gonzalez, Cobaltmediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions, Environ. Sci. Technol., 40 (2006) 1000–1007.
  35. J. De Laat, T.G. Le, Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions, Environ. Sci. Technol., 39 (2005) 1811–1818.
  36. M.J.K. Bashir, H.A. Aziz, S.Q. Aziz, S.A. Amr, An Overview of Wastewater Treatment Processes Optimization Using Response Surface Methodology (RSM), The 4th International Engineering Conference – Towards Engineering of 21st Century, Filistin, 1–11, 15–16 of October 2012.
  37. E. Gengec, M. Kobya, E. Demirbas, A. Akyol, K. Oktor, Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation, Desalination, 286 (2012) 200–209.
  38. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., USA, 2005.
  39. M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah, M. Mehranian, Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation, J. Hazard. Mater., 123 (2005) 187–195.
  40. J.P. Wang, Y.Z. Chen, X.W. Ge, H.Q. Yu, Optimization of coagulation–flocculation process for a paper-recycling wastewater treatment using response surface methodology, Colloids Surf., A, 302 (2007) 204–210.
  41. T. Ölmez, The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology, J. Hazard. Mater., 162 (2009) 1371–1378.
  42. R.H. Myers, Response surface methodology – current status and future directions, J. Qual. Technol., 31 (1999) 30–44.
  43. X.B. Zhu, J.P. Tian, R. Liu, L.J. Chen, Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology, Sep. Purif. Technol., 81 (2011) 444–450.
  44. I. Arslan-Alaton, G. Tureli, T. Olmez-Hanci, Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology, J. Photochem. Photobiol., A, 202 (2009) 142–153.
  45. M. Umar, H.A. Aziz, M.S. Yusoff, Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM), Desalination, 274 (2011) 278–283.
  46. S. Bajpai, S.K. Gupta, A. Dey, M.K. Jha, V. Bajpai, S. Joshi, A. Gupta, Application of central composite design approach for removal of chromium(VI) from aqueous solution using weakly anionic resin: modeling, optimization, and study of interactive variables, J. Hazard. Mater., 227–228 (2012) 436–444.
  47. X.B. Jing, Y. Cao, X. Zhang, D.H. Wang, X.Z. Wu, H. Xu, Biosorption of Cr(VI) from simulated wastewater using a cationic surfactant modified spent mushroom, Desalination, 269 (2011) 120–127.
  48. K. Ravikumar, S. Krishnan, S. Ramalingam, K. Balu, Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent, Dyes Pigm., 72 (2007) 66–74.
  49. A.A. Ahmad, B.H. Hameed, A.L. Ahmad, Removal of disperse dye from aqueous solution using waste-derived activated carbon: optimization study, J. Hazard. Mater., 170 (2009) 612–619.
  50. A.A.L. Zinatizadeh, A.R. Mohamed, A.Z. Abdullah, M.D. Mashitah, M. Hasnain Isa, G.D. Najafpour, Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM), Water Res., 40 (2006) 3193–3208.
  51. H.S. Li, S.Q. Zhou, Y.B. Sun, J. Lv, Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent, Waste Manage., 30 (2010) 2122–2129.
  52. Q.K. Beg, V. Sahai, R. Gupta, Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor, Process Biochem., 39 (2003) 203–209.
  53. J. Kumar, A. Bansal, Photocatalytic degradation in annular reactor: modelization and optimization using computational fluid dynamics (CFD) and response surface methodology (RSM), J. Environ. Chem. Eng., 1 (2013) 398–405.
  54. N. Rastkari, A. Eslami, S. Nasseri, E. Piroti, A. Asadi, Optimizing parameters on nanophotocatalytic degradation of ibuprofen using UVC/ZnO processes by response surface methodology, Pol. J. Environ. Stud., 26 (2017) 785–794.
  55. M. Ahmadi, F. Ghanbari, S. Madihi-Bidgoli, Photoperoxicoagulation using activated carbon fiber cathode as an efficient method for benzotriazole removal from aqueous solutions: modeling, optimization and mechanism, J. Photochem. Photobiol., A, 322–323 (2016) 85–94.
  56. M. Ahmadi, F. Ghanbari, M. Moradi, Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: effect of ph on sulfate and hydroxyl radicals, Water Sci. Technol., 72 (2015) 2095–2102.
  57. R. Hazime, Q.H. Nguyen, C. Ferronato, A. Salvador, F. Jaber, J.M. Chovelon, Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8, Appl. Catal., B, 144 (2014) 286–291.
  58. S. Akbari, F. Ghanbari, M. Moradi, Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate: applying low current density for oxidation mechanism, Chem. Eng. J., 294 (2016) 298–307.
  59. Y.F. Rao, L. Qu, H.S. Yang, W. Chu, Degradation of carbamazepine by Fe(II)-activated persulfate process, J. Hazard. Mater., 268 (2014) 23–32.
  60. N. Jaafarzadeh, M. Omidinasab, F. Ghanbari, Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater, Process Saf. Environ. Prot., 102 (2016) 462–472.
  61. X. Zhou, Z.L. Hou, L. Lv, J.J. Song, Z.Y. Yin, Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: parameters optimization, removal behavior and kinetics analysis, Chemosphere, 238 (2020) 124649.
  62. E. Pajootan, M. Arami, M. Rahimdokht, Application of carbon nanotubes coated electrodes and immobilized TiO2 for dye degradation in a continuous photocatalytic-electro-Fenton process, Ind. Eng. Chem. Res., 53 (2014) 16261–16269.
  63. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  64. S. Ahmadzadeh, M. Dolatabadi, Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment, J. Mol. Liq., 254 (2018) 76–82.
  65. E.S.Z. El-Ashtoukhy, N.K. Amin, O. Abdelwahab, Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor, Chem. Eng. J., 146 (2009) 205–210.
  66. W.M. Chen, Z.P. Gu, P. Wen, Q.B. Li, Degradation of refractory organic contaminants in membrane concentrates from landfill leachate by a combined coagulation-ozonation process, Chemosphere, 217 (2019) 411–422.
  67. A.P. Zhang, Z.P. Gu, W.M. Chen, Q.B. Li, G.B. Jiang, Removal of refractory organic pollutants in reverse-osmosis concentrated leachate by microwave–Fenton process, Environ. Sci. Pollut. Res., 25 (2018) 28907–28916.
  68. H. Wang, Y.H. Wang, Z.Y. Lou, N.W. Zhu, H.P. Yuan, The degradation processes of refractory substances in nanofiltration concentrated leachate using micro-ozonation, Waste Manage., 69 (2017) 274–280.
  69. R. Sridhar, V. Sivakumar, V. Prince Immanuel, J. Prakash Maran, Treatment of pulp and paper industry bleaching effluent by electrocoagulant process, J. Hazard. Mater., 186 (2011) 1495–1502.