References

  1. Q.F. Wang, Y.S. Shao, N.Y. Gao, S.S. Liu, L. Dong, P.H. Rao, W.H. Chu, B. Xu, N. An, J. Deng, Impact of zero valent iron/persulfate preoxidation on disinfection by-products through chlorination of alachlor, Chem. Eng. J., 380 (2020), doi: 10.1016/j. cej.2019.122435.
  2. F.L. Dong, Q.F. Lin, J. Deng, T.Q. Zhang, C. Li, X.D. Zai, Impact of UV irradiation on Chlorella sp. damage and disinfection by-products formation during subsequent chlorination of algal organic matter, Sci. Total Environ., 671 (2019) 519–527.
  3. M.Y. Xu, J. Deng, A.H. Cai, X.Y. Ma, J. Li, Q.S. Li, X.Y. Li, Comparision of UVC and UVC/persulfate processes for tetracycline removal in water, Chem. Eng. J., 384 (2020), doi: 10.1016/j.cej.2019.123320.
  4. A.H. Cai, J. Deng, M.Y. Xu, T.X. Zhu, S.Q. Zhou, J. Li, G.F. Wang, Degradation of tetracycline by UV activated monochloramine process: kinetics, degradation pathway, DBPs formation and toxicity assessment, Chem. Eng. J., 395 (2020), doi: 10.1016/j. cej.2020.125090.
  5. S.N. Chen, J. Deng, C. Ye, C.C. Xu, L.Y. Huai, J. Li, X.Y. Li, Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process, Sci. Total Environ., 742 (2020), doi: 10.1016/j.scitotenv.2020.140587.
  6. S.K. Ding, Y. Deng, T. Bond, C. Fang, Z.Q. Cao, W.H. Chu, Disinfection byproduct formation during drinking water treatment and distribution: a review of unintended effects of engineering agents and materials, Water Res., 160 (2019) 313–329.
  7. S. Regli, J. Chen, M. Messner, M.S. Elovitz, F.J. Letkiewicz, R.A. Pegram, T.J. Pepping, S.D. Richardson, J.M. Wright, Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters, Environ. Sci. Technol., 49 (2015) 13094–13102.
  8. USEPA, Distribution System Inventory, Integrity and Water Quality, United State Environmental Protection Agency, 2007. Available at: http:// www.epa.gov/safewater/disinfection/lt2/ compliance.html.
  9. GB5749-2006, Hygienic Standard for Drinking Water in People’s Republic of China, Ministry of Health, Beijing, China, 2006.
  10. T. Bond, E.H. Goslan, S.A. Parsons, B. Jefferson, A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates, Environ. Technol. Rev., 1 (2012) 93–113.
  11. M. Deborde, U.V. Gunten, Reactions of chlorine with inorganic and organic compounds during water treatment - kinetics and mechanisms: a critical review, Water Res., 42 (2008) 13–51.
  12. T.X. Zhu, J. Deng, M.Y. Xu, A.H. Cai, C. Ye, J. Li, X.Y. Li, Q.S. Li, DEET degradation in UV/monochloramine process: kinetics, degradation pathway, toxicity and energy consumption analysis, Chemosphere, 255 (2020), doi: 10.1016/j. chemosphere.2020.126962.
  13. R.K. Padhi, S. Subramanian, K.K. Satpathy, Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2, and ClO3) during treatment of different source water with chlorine and chlorine dioxide, Chemosphere, 218 (2019) 540–550.
  14. R.A. Li, J.A. McDonald; A. Sathasivan, S.J. Khan, Disinfectant residual stability leading to disinfectant decay and byproduct formation in drinking water distribution systems: a systematic review, Water Res., 153 (2019) 335–348.
  15. Y.Y. Zhao, Y.J. Yang, Y. Shao, J. Neal, T.Q. Zhang, The dependence of chlorine decay and DBP formation on pipe flow properties in drinking water distribution, Water Res., 141 (2018) 32–45.
  16. M.J. Rodriguez, J.B. Sérodes, P. Levallois, Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system, Water Res., 38 (2004) 4367–4382.
  17. R.P. Liu, C. Tan, C.Z. Hu, Z.L. Qi, H.J. Qu, Effects of bromide on the formation and transformation of disinfection by-products during chlorination and chloramination, Sci. Total Environ., 625 (2018) 252–261.
  18. L. Liang, P.C. Singer, Factors Influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water, Environ. Sci. Technol., 37 (2003) 2920–2928.
  19. X.F. Sun, M. Chen, D.B. Wei, Y.G. Du, Research progress of disinfection and disinfection by-products in China, J. Environ. Sci., 81 (2019) 52–67.
  20. H.J. Lin, Q.Y. Dai, L.L. Zheng, H.C. Hong, Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: taking haloacetic acids as a case study, Chemosphere, 248 (2020), doi: 10.1016/j. chemosphere.2020.125999.
  21. J.J. Lin, X. Chen, A.S. Zhu, H.C. Hong, Y. Liang, W.J. Deng, Regression models evaluating THMs, HAAs and HANs formation upon chloramination of source water collected from Yangtze River Delta Region, China, Ecotoxicol. Environ. Saf., 160 (2018) 249–256.
  22. X.L. Zhou, L.L. Zheng, S.Y. Chen, H.W. Du, Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China, Ecotoxicol. Environ. Saf., 171 (2019) 813–822.
  23. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 2005.
  24. USEPA, Method 551.1, Determination of Chlorination Disinfection By-products, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid- Liquid Extraction and Gas Chromatography with Electron Capture Detection, United State Environmental Protection Agency, Cincinnati, USA, 1995.
  25. USEPA, Method 552.3, Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection, United State Environmental Protection Agency, Cincinnati, USA, 2003.
  26. H.C. Hong, X.Q. Yan, X.H. Song, Y.Y. Qin, H.J. Sun, H.J. Lin, J.R. Chen, Y. Liang, Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values, Sci. Total Environ., 590 (2017) 720–728.
  27. R.M. Xue, H.L. Shi, Y.F. Ma, J. Yang, B. Hua, E.C. Inniss, C.D. Adams, T. Eichholz, Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection, Chemosphere, 189 (2017) 349–356.
  28. D.M. Golea, A. Upton, P. Jarvis, G. Moore, S. Sutherland, S.A. Parsons, S.J. Judd, THM and HAA formation from NOM in raw and treated surface waters, Water Res., 112 (2017) 226–235.
  29. H. Hong, F. Huang, F. Wang, L. Ding, H. Lin, Y. Liang, Properties of sediment NOM collected from a drinking water reservoir in South China, and its association with THMs and HAAs formation, J. Hydrol., 467 (2013) 274–279.
  30. J. Fang, X. Yang, J. Ma, C. Shang, Q. Zhao, Characterization of algal organic matter and formation of DBPs from chlor(am) ination, Water Res., 44 (2010) 5897–5906.
  31. L.L. Wei, Q.L. Zhao, S. Xue, T. Jia, F. Tang, P.Y. You, Behavior and characteristics of NOM during a laboratory-scale horizontal subsurface flow wetland treatment: effect of NOM derived from leaves and roots, Ecol. Eng., 35 (2009) 1405–1414.
  32. H.C. Hong, M.H. Wong, A. Mazumder, Y. Liang, Trophic state, natural organic matter content, and disinfection by-product formation potential of six drinking water reservoirs in the Pearl River Delta, China, J. Hydrol., 359 (2008) 164–173.
  33. G.H. Hua, D.A. Reckhow, I. Abusallout, Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources, Chemosphere, 130 (2015) 82–89.
  34. H.J. Sun, X.H. Song, T. Ye, J.B. Hu, H.C. Hong, J.R. Chen, H.J. Lin, H.Y. Yu, Formation of disinfection by-products during chlorination of organic matter from phoenix tree leaves and Chlorella vulgaris, Environ. Pollut., 243 (2018) 1887–1893.
  35. X.Y. Sun, Q.Y. Wu, H.Y. Hu, J.T. Tian, Effect of bromide on the formation of disinfection by-products during wastewater chlorination, Water Res., 43 (2009) 2391–2398.
  36. J. Tan, S. Allard, Y. Gruchlik, S. McDonald, C.A. Joll, A. Heitz, Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems, Sci. Total Environ., 541 (2016) 1572–1580.
  37. K. Doederer, W. Gernjak, H.S. Weinberg, M.J. Farré, Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water, Water Res., 48 (2014) 218–228.
  38. X.Y. Sun, Q.Y. Wu, H.Y. Hu, J. Tian, Effects of operating conditions on THMs and HAAs formation during wastewater chlorination, J. Hazard. Mater., 168 (2009) 1290–1295.
  39. J.F. Lu, T. Zhang, J. Ma, Z.L. Chen, Valuation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water, J. Hazard. Mater., 162 (2009) 140–145.
  40. B.N. Liu, D.A. Reckhow, Y. Li, A two-site chlorine decay model for the combined effects of pH, water distribution temperature and in-home heating profiles using differential evolution, Water Res., 53 (2014) 47–57.
  41. S. Kinani, B. Richard, Y. Souissi, S. Bouchonnet, Analysis of inorganic chloramines in water, TRAC, Trends Anal. Chem., 33 (2012) 55–67.
  42. X.J. Zhang, H.X. Ye, L.L. Zhou, L.W. Hu, Influence of chlorineto-nitrogen ratio on the inactivation of heterotrophic bacteria in bulk water during chloramination, Water Environ. Res., 85 (2013) 568–573.
  43. K.M.S. Hansen, S. Willach, M.G. Antoniou, H. Mosbæk, H. Albrechtsen, H.R. Andersen, Effect of pH on the formation of disinfection by-products in swimming pool water - is less THM better?, Water Res., 46 (2012) 6399–6409.
  44. G.H. Hua, D.A. Reckhow, Effect of alkaline pH on the stability of halogenated DBPs, J. Am. Water Works Assoc., 104 (2012) 107–120.
  45. G.H. Hua, D.A. Reckhow, Evaluation of bromine substitution factors of DBPs during chlorination and chloramination, Water Res., 46 (2012) 4208–4216.
  46. Y.C. Hung, B.W. Waters, V.K. Yemmireddy, C.H. Huang, pH effect on the formation of THM and HAA disinfection by-products and potential control strategies for food processing, J. Integr. Agric., 16 (2017) 2914–2923.
  47. V. Uyak, K. Ozdemir, I. Toroz, Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs, Sci. Total Environ., 378 (2007) 269–280.
  48. Y.F. Xie, Disinfection By-products in Drinking Water: Formation, Analysis and Control, Lewis Publishers, Washington, DC, 2004.
  49. B.N. Liu, D.A. Reckhow, DBP formation in hot and cold water across a simulated distribution system: effect of incubation time, heating time, pH, chlorine dose, and incubation temperature, Environ. Sci. Technol., 47 (2013) 11584–11591.
  50. T. Bond, J. Huang, N.J.D. Graham, M.R. Templeton, Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water - a case study, Sci. Total Environ., 470 (2014) 469–479.
  51. P. Roccaro, G.V. Korshin, D. Cook, C.W.K. Chow, M. Drikas, Effects of pH on the speciation coefficients in models of bromide influence on the formation of trihalomethanes and haloacetic acids, Water Res., 64 (2014) 117–126.
  52. I. Kristiana, D. Liew, R.K. Henderson, C.A. Joll, K.L. Linge, Formation and control of nitrogenous DBPs from Western Australian source waters: investigating the impacts of high nitrogen and bromide concentrations, J. Environ. Sci., 58 (2017) 102–115.
  53. C. Tian, R.P. Liu, T.T. Guo, H.J. Liu, Q. Luo, J.H. Qu, Chlorination and chloramination of high-bromide natural water: DBPs species transformation, Sep. Purif. Technol., 102 (2013) 86–93.
  54. M.B. Heeb, J. Criquet, S.F. Zimmermann-Steffens, U.V. Gunten, Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds - a critical review, Water Res., 48 (2014) 15–42.
  55. S. Allard, J. Tan, C.A. Joll, U. von Guntenit, Mechanism study on the formation of Cl-/Br-/I-trihalomethanes during chlorination/ chloramination combined with a theoretical cytotoxicity evaluation, Environ. Sci. Technol., 49 (2015) 11105–11114.
  56. X.S. Zha, Y. Liu, X. Liu, Q. Zhang, R.H. Dai, L.W. Ying, J. Wu, J.T. Wang, L.M. Ma, Effects of bromide and iodide ions on the formation of disinfection by-products during ozonation and subsequent chlorination of water containing biological source matters, Environ. Sci. Pollut. Res., 21 (2014) 2714–2723.
  57. A. Obolensky, P.C. Singer, Halogen substitution patterns among disinfection by-products in the information collection rule database, Environ. Sci. Technol., 39 (2005) 2719–2730.
  58. F. Ahmed, T.A. Khan, A.N.M. Fakhruddin, M.M. Rahman, R.M. Mazumdar, S. Ahmed, M.T. Imam, M. Kabir, A.M. Abdullah, Estimation and exposure concentration of trihalomethanes (THMs) and its human carcinogenic risk in supplied pipeline water of Dhaka City, Bangladesh, Environ. Sci. Pollut. Res., 26 (2019) 16316–16330.
  59. J.J. Wang, X. Liu, T.W. Ng, J.W. Xiao, A.T. Chow, P.K. Wong, Disinfection by-products formation from chlorination of pure bacterial cells and pipeline biofilms, Water Res., 47 (2013) 2701–2709.
  60. C. Zhang, C. Li, X. Zheng, J. Zhao, G. He, T. Zhang, Effect of pipe materials on chlorine decay, trihalomethanes formation, and bacterial communities in pilot-scale water distribution systems, Int. J. Environ. Sci. Technol., 14 (2017) 85–94.