References
- N. Akther, A. Sodiq, A. Giwa, S. Daer, H.A. Arafat, S.W. Hasan,
Recent advancements in forward osmosis desalination: a
review, Chem. Eng. J., 281 (2015) 502–522.
- S. Lee, C. Boo, M. Elimelech, S. Hong, Comparison of fouling
behavior in forward osmosis (FO) and reverse osmosis (RO),
J. Membr. Sci., 365 (2010) 34–39.
- J.Y. Law, A.W. Mohammad, A study of forward osmosis
performance and its application on sodium succinate feed
solution using ionic salt draw solution, Int. J. Biomass
Renewable, 5 (2016) 8–13.
- P.S. Goh, T. Matsuura, A.F. Ismail, N. Hilal, Recent trends
in membranes and membrane processes for desalination,
Desalination, 391 (2016) 43–60.
- Y.P. Chun, D. Mulcahy, L. Zou, I.S. Kim, A short review of
membrane fouling in forward osmosis processes, Membranes
(Basel), 7 (2017) 1–23.
- Y. Xu, X. Peng, C.Y. Tang, Q.S. Fu, S. Nie, Effect of draw solution
concentration and operating conditions on forward osmosis
and pressure retarded osmosis performance in a spiral wound
module, J. Membr. Sci., 348 (2010) 298–309.
- P. Taylor, L. Chekli, S. Phuntsho, H.K. Shon, S. Vigneswaran,
A. Chanan, A review of draw solutes in forward osmosis
process and their use in modern applications, Desal. Water
Treat., 43 (2012) 37–41.
- Q. Long, Y. Jia, J. Li, J. Yang, F. Liu, J. Zheng, B. Yu, Recent
advance on draw solutes development in forward osmosis,
Processes, 165 (2018) 1–20.
- B.-M. Jun, T.P.N. Nguyen, S.-H. Ahn, I.-C. Kim, Y.-N. Kwon,
The application of polyethyleneimine draw solution in a
combined forward osmosis/nanofiltration system, J. Appl.
Polym. Sci., 132 (2015), https://doi.org/10.1002/app.42198.
- A. Achilli, T.Y. Cath, A.E. Childress, Selection of inorganic-based
draw solutions for forward osmosis applications, J. Membr. Sci.,
364 (2010) 233–241.
- A.F. Al-alalawy, T.R. Abbas, H.K. Mohammed, Comparative
study for organic and inorganic draw solutions in forward
osmosis osmotic pressure between feed and draw, Al-Khwarizmi
Eng. J., 13 (2017) 94–102.
- Y.F. Cai, X.M. Hu, A critical review on draw solutes development
for forward osmosis, Desalination, 391 (2016) 16–29.
- M.A. Dawoud, M.M. Al Mulla, Environmental impacts of
seawater desalination: Arabian Gulf case study, Int. J. Environ.
Sustainability, 1 (2012) 22–37.
- S. Manju, N. Sagar, Renewable energy integrated desalination: a
sustainable solution to overcome future fresh-water scarcity in
India, Renewable Sustainable Energy Rev., 73 (2017) 594–609.
- Q. Zhao, N. Chen, D. Zhao, X. Lu, Thermoresponsive magnetic
nanoparticles for seawater desalination, ACS Appl. Mater.
Interfaces, 5 (2013) 11453–11461.
- I. Yildiz, B.S. Yildiz, Applications of thermoresponsive magnetic
nanoparticles, J. Nanomater., 2015 (2015) 1–12.
- D.L. Zhao, S.C. Chen, C.X. Guo, Q.P. Zhao, X.M. Lu, Multifunctional
forward osmosis draw solutes for seawater
desalination, Chin. J. Chem. Eng., 24 (2016) 23–30.
- J. Kim, H. Kang, Y.-S. Choi, Y.A. Yu, J.-C. Lee, Thermo-responsive
oligomeric poly(tetrabutylphosphonium styrenesulfonate)
s as draw solutes for forward osmosis (FO) applications,
Desalination, 381 (2016) 84–94.
- R.L.G. Lecaros, Z.-C. Syu, Y.-H. Chiao, S.R. Wickramasinghe,
Y.-L. Ji, Q.-F. An, W.-S. Hung, C.-C. Hu, K.-R. Lee, J.-Y. Lai,
Characterization of a thermoresponsive chitosan derivative
as a potential draw solute for forward osmosis, Environ. Sci.
Technol., 50 (2016) 11935–11942.
- R.W. Ou, Y.Q. Wang, H.T. Wang, T.W. Xu, Thermo-sensitive
polyelectrolytes as draw solutions in forward osmosis process,
Desalination, 318 (2013) 48–55.
- D. Li, X. Zhang, J.F. Yao, G.P. Simon, H.T. Wang, Stimuliresponsive
polymer hydrogels as a new class of draw agent for
forward osmosis desalination, Chem. Commun., 47 (2011) 1710.
- J. Wei, Z.-X. Low, R. Ou, G.P. Simon, H. Wang, Hydrogelpolyurethane
interpenetrating network material as an advanced
draw agent for forward osmosis process, Water Res., 96 (2016)
292–298.
- Y. Cai, R. Wang, W.B. Krantz, A.G. Fane, X.M. Hu, Exploration of
using thermally responsive polyionic liquid hydrogels as draw
agents in forward osmosis, RSC Adv., 5 (2015) 97143–97150.
- A. Razmjou, G.P. Simon, H. Wang, Effect of particle size on
the performance of forward osmosis desalination by stimuliresponsive
polymer hydrogels as a draw agent, Chem. Eng. J.,
215–216 (2013) 913–920.
- Y. Hartanto, M. Zargar, X. Cui, Y. Shen, B. Jin, S. Dai,
Thermoresponsive cationic copolymer microgels as high
performance draw agents in forward osmosis desalination,
J. Membr. Sci., 518 (2016) 273–281.
- Y. Hartanto, M. Zargar, H. Wang, B. Jin, S. Dai, Thermoresponsive
acidic microgels as functional draw agents for forward osmosis
desalination, Environ. Sci. Technol., 50 (2016) 4221–4228.
- Y.F. Cai, W.M. Shen, J. Wei, T.H. Chong, R. Wang, W.B. Krantz,
A.G. Fane, X.M. Hu, Energy-efficient desalination by forward
osmosis using responsive ionic liquid draw solutes, Environ.
Sci. Water Res. Technol., 1 (2015) 341–347.
- Y.J. Zhong, X.S. Feng, W. Chen, X. Wang, K.-W. Huang,
Y. Gnanou, Z.P. Lai, Using UCST ionic liquid as a draw solute
in forward osmosis to treat high-salinity water, Environ. Sci.
Technol., 50 (2016) 1039–1045.
- E. Kamio, A. Takenaka, T. Takahashi, H. Matsuyama,
Fundamental investigation of osmolality, thermo-responsive
phase diagram, and water-drawing ability of ionic-liquidbased
draw solution for forward osmosis membrane process,
J. Membr. Sci., 570 (2018) 93–102.
- P.S. Nayan, S.M. Saufi, S.B. Abdullah, M.N. Abu Seman,
M. Mohd Taib, Tetrabutylphosphonium trifluoroacetate ([P4444] CF3COO) thermoresponsive ionic liquid as a draw solution
for forward osmosis process, Malaysian J. Anal. Sci., 22 (2018)
605–611.
- M.A.M. Abdullah, M.S. Man, S.N. Phang, M.S. Syed,
S.B. Abdullah, Potential thermo-responsive ionic liquid as draw
solution in forward osmosis application, J. Eng. Sci. Technol.,
14 (2019) 1031–1042.
- H. Xiao, C. Yufeng, W. Rong, A Draw Solute for a Forward
Osmosis, World Intellectual Property Organization, International
Bureau, Australia, 2014.
- H.Y. Luo, Q. Wang, T.C. Zhang, T. Tao, A.J. Zhou, L. Chen,
X.F. Bie, A review on the recovery methods of draw solutes in
forward osmosis, J. Water Process Eng., 4 (2014) 212–223.
- Q. Ge, M. Ling, T.-S. Chung, Draw solutions for forward
osmosis processes: developments, challenges, and prospects for
the future, J. Membr. Sci., 442 (2013) 225–237.
- D.J. Johnson, W.A. Suwaileh, A.W. Mohammed, N. Hilal,
Osmotic’s potential: an overview of draw solutes for forward
osmosis, Desalination, 434 (2018) 100–120.
- X. Xiaohua, Z. Liang, L. Xia, J. Shengxiang, Ionic liquids as
additives in high performance liquid chromatography: analysis
of amines and the interaction mechanism of ionic liquids, Anal.
Chim. Acta, 519 (2004) 207–211.
- R. Hayes, G.G. Warr, R. Atkin, Structure and Nanostructure in
Ionic Liquids, Chem. Rev., 115 (2006) 6357–6426.
- M.I. Cabac, M. Besnard, Y. Danten, J.A.P. Coutinho, C. De Lib,
Solubility of CO2 in 1-butyl-3-methyl-imidazolium-trifluoro
acetate ionic liquid studied by raman spectroscopy and DFT
investigations, J. Phys. Chem. B, 115 (2011) 3538–3550.
- E. Alvarez-Guerra, S.P.M. Ventura, J.A.P. Coutinho, A. Irabien,
Ionic liquid-based three phase partitioning (ILTPP) systems:
ionic liquid recovery and recycling, Fluid Phase Equilib.,
371 (2014) 67–74.
- R. Feng, D.B. Zhao, Y.J. Guo, Revisiting characteristics of
ionic liquids: a review for further application development,
J. Environ. Prot., 1 (2010) 95–104.
- M.S. Khan, C.S. Liew, K.A. Kurnia, B. Cornelius, B. Lal,
Application of COSMO-RS in investigating ionic liquid as
thermodynamic hydrate inhibitor for methane hydrate,
Procedia Eng., 148 (2016) 862–869.
- J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer,
G.A. Broker, R.D. Rogers, Characterization and comparison of
hydrophilic and hydrophobic room temperature ionic liquids
incorporating the imidazolium cation, Green Chem., 3 (2001)
156–164.
- M.S. Man, M.A.M. Abdullah, S.B. Abdullah, Z. Yaacob,
Screening cation and anion of ionic liquid for dissolution
of silicon dioxide using COSMO-RS, Indian J. Sci. Technol.,
10 (2017) 1–6.
- M.J. Earle, K.R. Seddon, Ionic liquids: green solvents for the
future, J. Electrochem. Soc., 72 (2000) 1391–1398.
- A.P.D.L. Ríos, A. Irabien, F. Hollmann, F. José, H. Fernández,
Ionic liquids: green solvents for chemical processing, J. Chem.,
2013 (2013) 2–4.
- C. Geun, Y. Pu, A.J. Ragauskas, Ionic liquids: promising green
solvents for lignocellulosic biomass utilization, Curr. Opin.
Green Sustainable Chem., 5 (2017) 5–11.
- A. Joseph, G. Żyła, V.I. Thomas, P.R. Nair, A.S. Padmanabhan,
S. Mathew, Paramagnetic ionic liquids for advanced applications:
a review, J. Mol. Liq., 218 (2016) 319–331.
- J.P. Hallett, T. Welton, Room-temperature ionic liquids:
solvents for synthesis and catalysis, Chem. Rev., 111 (2011)
3508–3576.
- Z.Y. Duan, Y.L. Gu, J. Zhang, L.Y. Zhu, Y.Q. Deng, Protic
pyridinium ionic liquids: synthesis, acidity determination and
their performances for acid catalysis, J. Mol. Catal. A: Chem.,
250 (2006) 163–168.
- A. Abo-Hamad, M.A. AlSaadi, M. Hayyan, I. Juneidi,
M.A. Hashim, Ionic liquid-carbon nanomaterial hybrids for
electrochemical sensor applications: a review, Electrochim.
Acta, 193 (2016) 321–343.
- S.A. Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende,
K.K. Tadi, C.K. Yoo, Synthesis, characterization, and
application of novel trihexyl tetradecyl phosphonium bis
(2,4,4-trimethylpentyl) phosphinate for extractive desulfurization
of liquid fuel, Fuel Process. Technol., 123 (2014) 1–10.
- M. Grabda, M. Panigrahi, S. Oleszek, D. Kozak, F. Eckert,
E. Shibata, T. Nakamura, COSMO-RS screening for efficient
ionic liquid extraction solvents for NdCl3 and DyCl3, Fluid
Phase Equilib., 383 (2014) 134–143.
- J.F. Wang, J.Q. Luo, S.C. Feng, H.R. Li, Y.H. Wan, X.P. Zhang,
Recent development of ionic liquid membranes, Green Energy
Environ., 1 (2016) 43–61.
- Ö. Gülcin, S. Senol, E. Meral, Optimization of lanthanum
transport through supported liquid membranes based on ionic
liquid, Chem. Eng. Res. Des., 140 (2018) 1–11.
- Q. Che, B. Sun, R. He, Preparation and characterization of
new anhydrous, conducting membranes based on composites
of ionic liquid trifluoroacetic propylamine and polymers of
sulfonated poly (ether ether) ketone or polyvinylidenefluoride,
Electrochim. Acta, 53 (2008) 4428–4434.
- J.L. Zhang, Z.P. Qin, L. Yang, H.X. Guo, S. Han, Activation
promoted ionic liquid modification of reverse osmosis
membrane towards enhanced permeability for desalination,
J. Taiwan Inst. Chem. Eng., 80 (2017) 25–33.
- A.A. Askalany, A. Freni, G. Santori, Supported ionic liquid
water sorbent for high throughput desalination and drying,
Desalination, 452 (2019) 258–264.
- T. Hoshino, Innovative lithium recovery technique from
seawater by using world-first dialysis with a lithium ionic
superconductor, Desalination, 359 (2015) 59–63.
- Y.J. Zhong, X.B. Wang, X.S. Feng, S. Telalovic, Y. Gnanou,
K.-W. Huang, X.M. Hu, Z.P. Lai, Osmotic heat engine using
thermally responsive ionic liquids osmotic heat engine using
thermally responsive ionic liquids, Environ. Sci. Technol., 51
(2017) 9403–9409.
- Y. Kohno, H. Ohno, Temperature-responsive ionic liquid/
water interfaces: relation between hydrophilicity of ions and
dynamic phase change, Phys. Chem. Chem. Phys., 14 (2012)
5063–5070.
- K. Fukumoto, H. Ohno, LCST-type phase changes of a mixture
of water and ionic liquids derived from amino acids, Angew.
Chem. Int. Ed., 46 (2007) 1852–1855.
- S. Saita, Y. Kohno, H. Ohno, Detection of small differences in
the hydrophilicity of ions using the LCST-type phase transition
of an ionic liquid–water mixture, Chem. Commun., 49 (2013)
93–95.
- C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki,
J.F. Brennecke, Thermophysical properties of imidazoliumbased
ionic liquids, J. Chem. Eng. Data, 49 (2004) 954–964.
- Y. Qiao, W. Ma, N. Theyssen, C. Chen, Z. Hou, Temperatureresponsive
ionic liquids: fundamental behaviors and catalytic
applications, Chem. Rev., 117 (2017) 6881–6928.
- A. Riisager, R. Fehrmann, R.W. Berg, R. van Hal, P. Wasserscheid,
Thermomorphic phase separation in ionic liquid–organic liquid
systems—conductivity and spectroscopic characterization,
Phys. Chem. Chem. Phys., 7 (2005) 3052–3058.
- R. Vreekamp, D. Castellano, J. Ortega, F. Espiau, L. Fern,
Thermodynamic behavior of the binaries 1-butylpyridinium
tetrafluoroborate with water and alkanols: their interpretation
using 1H NMR spectroscopy and quantum-chemistry
calculations, J. Phys. Chem. B, 115 (2011) 8763–8774.
- P. Nockemann, B. Thijs, T.N. Parac-vogt, K. Van Hecke,
L. Van Meervelt, B. Tinant, I. Hartenbach, T. Schleid, V.T. Ngan,
M.T. Nguyen, K. Binnemans, Carboxyl-functionalized taskspecific
ionic liquids for solubilizing metal oxides, Inorg.
Chem., 47 (2008) 9987–9999.
- E. Sivertsen, T. Holt, W.R. Thelin, Concentration and
temperature effects on water and salt permeabilities in osmosis
and implications in pressure-retarded osmosis, Membranes
(Basel), 8 (2018) 1–13.
- S. Dutta, K. Nath, Prospect of ionic liquids and deep eutectic
solvents as new generation draw solution in forward osmosis
process, J. Water Process Eng., 21 (2018) 163–176.
- D. Zhao, Developing Multifunctional Forward Osmosis (FO)
Draw Solutes for Seawater Desalination, Ph.D Thesis, National
University of Singapore, Singapore, 2015. Available at: https://
scholarbank.nus.edu.sg/handle/10635/122319
- M. Xie, W.E. Price, L.D. Nghiem, M. Elimelech, Effects of feed and
draw solution temperature and transmembrane temperature
difference on the rejection of trace organic contaminants by
forward osmosis, J. Membr. Sci., 438 (2013) 57–64.
- J.R. Mccutcheon, M. Elimelech, Influence of concentrative and
dilutive internal concentration polarization on flux behavior in
forward osmosis, J. Membr. Sci., 284 (2006) 237–247.
- W. Xu, Q. Ge, Novel functionalized forward osmosis (FO)
membranes for FO desalination: improved process performance
and fouling resistance, J. Membr. Sci., 555 (2018) 507–516.
- T. Chung, S. Zhang, K. Yu, J. Su, M. Ming, Forward osmosis
processes: yesterday, today and tomorrow, Desalination
287 (2012) 78–81.
- J.M. Zhang, J. Wu, J. Yu, X.Y. Zhang, J.S. He, J. Zhang, Application
of ionic liquids for dissolving cellulose and fabricating cellulosebased
materials: state of the art and future trends, Mater. Chem.
Front., 1 (2017) 1273–1290.
- F. Ibrahim, M. Moniruzzaman, S. Yusup, Y. Uemura, Dissolution
of cellulose with ionic liquid in pressurized cell, J. Mol. Liq.,
211 (2015) 370–372.
- M. Isik, H. Sardon, D. Mecerreyes, Ionic liquids and cellulose:
dissolution, chemical modification and preparation of new
cellulosic materials, Int. J. Mol. Sci., 15 (2014) 11922–11940.
- S.D. Zhu, Y.X. Wu, Q.M. Chen, Z. Yu, C.W. Wang, S.W. Jin,
Y.G. Ding, G. Wu, Dissolution of cellulose with ionic liquids and
its application: a mini-review, Green Chem., 8 (2006) 325–327.
- A. Bhinder, S. Shabani, M. Sadrzadeh, Effect of Internal and
External Concentration Polarizations on the Performance of
Forward Osmosis Polarizations on the Performance of Forward
Osmosis Process Process, In: Osmotically Driven Membrane
Processes, 1st ed., IntechOpen, London, 2018, pp. 618–692.
- N. Bui, J.T. Arena, J.R. Mccutcheon, Proper accounting of mass
transfer resistances in forward osmosis: improving the accuracy
of model predictions of structural parameter, J. Membr. Sci.,
492 (2015) 289–302.
- T.Y. Cath, M. Elimelech, J.R. Mccutcheon, R.L. Mcginnis,
A. Achilli, D. Anastasio, A.R. Brady, A.E. Childress, I. V Farr,
N.T. Hancock, J. Lampi, L.D. Nghiem, M. Xie, N. Yin, Standard
methodology for evaluating membrane performance in
osmotically driven membrane processes, Desalination, 312
(2013) 31–38.
- A. Deshmukh, N.Y. Yip, S. Lin, M. Elimelech, Desalination by
forward osmosis: identifying performance limiting parameters
through module-scale modeling, J. Membr. Sci., 491 (2015)
159–167.
- M. Wlazło, E.I. Alevizou, E.C. Voutsas, U. Domańska, Prediction
of ionic liquids phase equilibrium with the COSMO-RS model,
Fluid Phase Equilib., 424 (2016) 16–31.
- M. Lotfi, M.I.A. Mutalib, C.D. Wilfred, N.B. Alitheen, M. Goto,
Analysis of multiple solvation interactions of methotrexate and
ammonium based ionic liquids using COSMO-RS, Procedia
Eng., 148 (2016) 459–466.
- A. Kamgar, F. Esmaeilzadeh, Prediction of H2S solubility
in [HMIM][Pf6], [HMIM][BF4] and [HMIM][Tf2N] using
UNIQUAC, NRTL and COSMO-RS, J. Mol. Liq., 220 (2016)
631–634.
- C.B. Bavoh, B. Lal, O. Nashed, M.S. Khan, K.K. Lau,
M.A. Bustam, COSMO-RS: an ionic liquid pre-screening tool
for gas hydrate mitigation, Chin. J. Chem. Eng., 24 (2016)
1619–1624.
- T. Zhou, L. Chen, Y.M. Ye, L.F. Chen, Z.W. Qi, H. Freund,
K. Sundmacher, An overview of mutual solubility of ionic
liquids and water predicted by COSMO-RS, Ind. Eng. Chem.
Res., 51 (2012) 6256–6264.
- Z. Bai, H. Liu, Y. Liu, L. Wu, Prediction of the vapor–
liquid equilibrium of chemical reactive systems containing
formaldehyde using the COSMO-RS method, Fluid Phase
Equilib., 415 (2016) 125–133.
- M. Moreno, F. Castiglione, A. Mele, C. Pasqui, G. Raos,
Interaction of water with the model ionic liquid [BMIM][BF4]:
molecular dynamics simulations and comparison with NMR
data, J. Phys. Chem. B, 112 (2008) 7826–7836.
- M.H. Ghatee, A.R. Zolghadr, Local depolarization in
hydrophobic and hydrophilic ionic liquids/water mixtures:
car-parrinello and classical molecular dynamics simulation,
J. Phys. Chem. C, 117 (2013) 2066–2077.
- S.M. Fatemi, M. Foroutan, Recent findings about ionic liquids
mixtures obtained by molecular dynamics simulation,
J. Nanostruct.
Chem., 5 (2015) 243–253.
- J. Han, C. Dai, G. Yu, Z. Lei, Parameterization of COSMO-RS
model for ionic liquids, Green Energy Environ., 3 (2018) 247–265.
- E.J. Maginn, Molecular simulation of ionic liquids: current
status and future opportunities, J. Phys.: Condens. Matter,
21 (2009) 1–17.
- L.I.N. Tome, M. Jorge, J.R.B. Gomes, A.P. Coutinho, Molecular
dynamics simulation studies of the interactions between ionic
liquids and amino acids in aqueous solution, J. Phys. Chem. B,
116 (2012) 1831−1842.
- Y.L. Zhao, H.Y. Wang, Y.C. Pei, Z.P. Liu, J.J. Wang, Understanding
the mechanism of LCST phase separation of mixed ionic
liquids in water by MD simulations, Phys. Chem. Chem. Phys.,
18 (2016) 23238–23245.
- X.C. Xu, C.J. Peng, H.L. Liu, Y. Hu, Modeling pVT properties
and phase equilibria for systems containing ionic liquids using
a new lattice-fluid equation of state, Ind. Eng. Chem. Res.,
48 (2009) 11189–11201.
- L.D. Simoni, Y. Lin, J.F. Brennecke, M.A. Stadtherr, Modeling
liquid–liquid equilibrium of ionic liquid systems with NRTL,
Ind. Eng. Chem. Res., 47 (2008) 256–272.
- F.M. Maia, O. Rodríguez, E.A. Macedo, Fluid phase equilibria
LLE for (water + ionic liquid) binary systems using [CxMIM]
[BF4] (x = 6, 8) ionic liquids, Fluid Phase Equilib., 296 (2010)
184–191.
- A. Re, A. Marciniak, Solubility of 1-alkyl-3-ethylimidazoliumbased
ionic liquids in water and 1-octanol, J. Chem. Eng. Data,
53 (2008) 1126–1132.
- A. Arce, M.J. Earle, S.P. Katdare, Phase equilibria of mixtures
of mutually immiscible ionic liquids, Fluid Phase Equilib., 261
(2007) 427–433.
- A.L. Lydersen, Estimation of Critical Properties of Organic
Compounds by the Method of Group Contributions,
Engineering Experiment Station Report 3. College of
Engineering, University of Wisconsin, Madison, 1955, p. 22.
- D. Ambrose, Correlation and Estimation of Vapor-Liquid
Critical Properties: I. Critical Temperatures of Organic
Compounds, Vol. 1, National Physics Laboratory, 1978, p. 35.
- K.M. Klincewicz, R.C. Reid, Estimation of critical properties
with group contribution methods, AIChE J., 30 (1984) 137–142.
- K.G. Joback, R.C. Reid, Estimation of pure-component
properties from group-contributions, Chem. Eng. Commun.,
57 (1987) 233–243.
- J.O. Valderrama, V.H. Alvarez, A new group contribution
method based on equation of state parameters to evaluate
the critical properties of simple and complex molecules, Can.
J. Chem. Eng., 84 (2006) 431–446.
- R. Farzi, F. Esmaeilzadeh, Fluid phase equilibria prediction
of densities of pure ionic liquids using Esmaeilzadeh-
Roshanfekr equation of state and critical properties from
group contribution method, Fluid Phase Equilib., 423 (2016)
101–108.
- J.O. Valderrama, P.A. Robles, Critical properties, Normal
boiling temperatures, and acentric factors of fifty ionic liquids,
Ind. Eng. Chem. Res., 46 (2007) 1338–1344.
- H.G. Zeweldi, L.A. Limjuco, A.P. Bendoy, H. Kim, M. Jun,
H. Kyong, E.M. Johnson, H. Lee, W. Chung, G.M. Nisola, The
potential of monocationic imidazolium-, phosphonium-, and
ammonium-based hydrophilic ionic liquids as draw solutes
for forward osmosis, Desalination, 444 (2018) 94–106.
- M.H. Keshavarz, H.R. Pouretedal, E. Saberi, A simple method
for prediction of density of ionic liquids through their
molecular structure, J. Mol. Liq., 216 (2016) 732–737.
- K. Paduszy, U. Doma, A new group contribution method for
prediction of density of pure ionic liquids over a wide range
of temperature and pressure, Ind. Eng. Chem. Res., 51 (2012)
591–604.
- J.A. Lazzús, G. Pulgar-villarroel, F. Cuturrufo, P. Vega,
Development of a group contribution method for estimating
surface tension of ionic liquids over a wide range of
temperatures, J. Mol. Liq., 240 (2017) 522–531.
- F. Gharagheizi, P. Ilani-kashkouli, A.H. Mohammadi, Group
contribution model for estimation of surface tension of ionic
liquids, Chem. Eng. Sci., 78 (2012) 204–208.
- J. Albert, K. Müller, A group contribution method for the
thermal properties of ionic liquids, Ind. Eng. Chem. Res.,
53 (2014) 17522–17526.
- K. Kamide, T. Dobashi, Chapter 5 – Colligative Properties
and Virial Coefficients of Polymer Solutions, K. Kamide,
T. Dobashi, Eds., Physical Chemistry Polymer Solutions, 1st
ed., Theoretical Background, Elsevier B.V, Amsterdam, 2000,
pp. 236–279.
- L.M. Surhone, M.T. Timpledon, S.F. Marseken, Van’t Hoff
Factor, Betascript Publishing, Beau Bassin, Mauritius, 2010.
- M. Klahn, C. Stuber, A. Seduraman, P. Wu, What determines
the miscibility of ionic liquids with water?, Identification of
the underlying factors, J. Phys. Chem. B, 114 (2010) 2856–2868.
- D.L. Zhao, P. Wang, Q.P. Zhao, N.P. Chen, X.M. Lu,
Thermoresponsive copolymer-based draw solution for
seawater desalination in a combined process of forward
osmosis and membrane distillation, Desalination, 348 (2014)
26–32.
- K.S. Bowden, A. Achilli, A.E. Childress, Bioresource
technology organic ionic salt draw solutions for osmotic
membrane bioreactors, Bioresour. Technol., 122 (2012)
207–216.
- Z.F. Cui, Y. Jiang, R.W. Field, Fundamentals of Pressure-Driven
Membrane Separation Processes, Z.F. Cui, H.S. Muralidhara,
Eds., Membrane Technology, 1st ed., Elsevier Ltd., Oxford,
2010, pp. 1–18.
- M. Qasim, N.A. Darwish, S. Sarp, N. Hilal, Water desalination
by forward (direct) osmosis phenomenon: a comprehensive
review, Desalination, 374 (2015) 47–69.
- N. Kaushik, Membrane Separation Processes, 2nd ed., PHI
Learning, Delhi, 2017.
- A. Subramani, J.G. Jacangelo, Emerging desalination
technologies for water treatment: a critical review, Water Res.,
75 (2015) 164–187.