References

  1. A. Rashid, H.N. Bhatti, M. Iqbal, S. Noreen, Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: a mechanistic study, Ecol. Eng., 91 (2016) 459–471.
  2. K. Abida, N.B. Haq, M.K. Gillian, Re-use of agricultural wastes for the removal and recovery of Zr(IV) from aqueous solutions, J. Taiwan Inst. Chem. Eng., 59 (2016) 330–340.
  3. D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sánchez, Graphenebased microbots for toxic heavy metal removal and recovery from water, Nano Lett., 16 (2016) 2860–2866.
  4. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  5. I. Mobasherpour, E. Salahi, M. Pazouki, Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nanocrystallite hydroxyapatite from aqueous solutions: adsorption isotherm study, Arabian J. Chem., 5 (2012) 439–446.
  6. G. Fahimeh, M. Ahmad, E. Rahmatollah, Lead sorption properties of nanohydroxyapatite alginate composite adsorbents, Chem. Eng. J., 200–202 (2012) 471–479.
  7. G.N. Kousalya, M.G. Rajiv, S. Meenakshi, Removal of toxic Cr6+ ions from aqueous solution using nanohydroxyapatite based chitin and chitosan hybrid composites, Adsorpt. Sci. Technol., 28 (2010) 49–64.
  8. R.C. Saidur, K.Y. Ernest, Arsenic and chromium removal by mixed magnetite maghemite nanoparticles and the effect of phosphate on removal, J. Environ. Manage., 91 (2010) 2238–2247.
  9. S. Mor, K. Ravindra, N.R. Bishnoi, Adsorption of chromium from aqueous solution by activated alumina and activated charcoal, Bioresour. Technol., 98 (2007) 954–957.
  10. M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen, A. Ghaffar, G.A. Shar, M. Asif Tahir, M. Iqbal, Vibrio, Bioluminescence inhibition assay for ecotoxicity assessment: a review, Sci. Total Environ., 626 (2018) 1295–1309.
  11. M. Iqbal, Vicia faba bioassay for environmental toxicity monitoring: a review, Chemosphere, 144 (2016) 785–802.
  12. L.V.A. Gurgel, J.C.G. de Melo, J.C. de Lena, F.L. Gil, Adsorption of chromium(VI) ion from aqueous solution by succinylated mercerized cellulose functionalized with quaternary ammonium groups, Bioresour. Technol., 100 (2009) 3214–3220.
  13. C. Liu, H. Xu, H. Li, L. Liu, L. Xu, Z. Ye, Efficient degradation of methylene blue dye by catalytic oxidation using the Na8Nb6O19·13H2O/H2O2 system, Korean J. Chem. Eng., 28 (2011) 1126–1132.
  14. M. Alaqarbeh, M. Shammout, A. Awwad, Nano platelets kaolinite for the adsorption of toxic metal ions in the environment, Chem. Int., 6 (2020) 49–55.
  15. A.M. Alasadi, F.I. Khaili, A.M. Awwad, Adsorption of Cu(II), Ni(II) and Zn(II) ions by nano kaolinite: thermodynamics and kinetics studies, Chem. Int., 5 (2019) 2258–2268.
  16. F. Minas, B.S. Chandravanshi, S. Leta, Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia, Chem. Int., 3 (2017) 291–305.
  17. C.P. Ukpaka, BTX degradation: the concept of microbial integration, Chem. Int., 3 (2017) 8–18.
  18. K.G. Mc, M.S. Otterburn, A.G. Sweeney, The removal of colour from effluent using various adsorbents–III. Silica: rate process, Water Res., 14 (1980) 15–20.
  19. D. Lijing, Z. Zhiliang, Q. Yanling, Z. Jianfu, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chem. Eng. J., 165 (2010) 827–834.
  20. G.N. Kousalya, G.M. Rajiv, S.C. Sairam, S. Meenakshi, Synthesis of nanohydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe3+, Carbohydr. Polym., 82 (2010) 594–599.
  21. C. Stötzel, F.A. Müller, F. Reinert, F. Niederdraenk, J.E. Barralet, U. Gbureck, Ion adsorption behaviour of hydroxyapatite with different crystallinities, Colloids Surf., B, 74 (2009) 91–95.
  22. D.L. Goloshchapov, V.M. Kashkarov, N.A. Rumyantseva, P.V. Seredinn, A.S. Lenshin, B.L. Agapov, E.P. Domashevskaya, Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s egg shell, Ceram. Int., 39 (2013) 4539–4549.
  23. F. Granados-Correa, J. Vilchis-Granados, M. Jiménez-Reyes, L.A. Quiroz-Granados, Adsorption behaviour of La3+ and Eu3+ ions from aqueous solutions by hydroxyapatite: kinetic, isotherm and thermodynamic studies, J. Chem., 2013 (2013) 1–9, doi: 10.1155/2013/751696.
  24. C. Limei, H. Lihua, G. Xiaoyao, Z. Yakun, W. Yaoguang, W. Qin, D. Bin, Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferro ferric oxide nanocomposites with easy magnetic separation assistance, J. Mol. Liq., 198 (2014) 157–163.
  25. R.R. Sheha, Sorption behavior of Zn2+ ions on synthesized hydroxyapatites, J. Colloid Interface Sci., 310 (2007) 18–26.
  26. R.M. Khaled, M.E. Zenab, A.S. Aida, In vitro properties of nanohydroxyapatite/chitosan biocomposites, Ceram. Int., 37 (2011) 3265–3271.
  27. R.J. Narayan, P.N. Kumta, C. Sfeir, D.-H. Lee, D. Olton, D.W. Choi, Nanostructured ceramics in medical devices: applications and prospects, JOM, 56 (2004) 38–43.
  28. A. Krestou, A. Xenidis, D. Panias, Mechanism of aqueous uranium(VI) uptake by hydroxyapatite, Miner. Eng., 17 (2004) 373–381.
  29. S. Sugiyama, H. Matsumoto, H. Hayashi, J.B. Moffat, Sorption and ion exchange properties of barium hydroxyapatite with divalent cations, Colloids Surf., A, 169 (2000) 17–26.
  30. A. Ruksudjarit, K. Pengpat, G. Rujijanagul, T. Tunkasiri, Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone, Curr. Appl. Phys., 8 (2008) 270–272.
  31. A. Siddharthan, T.S. Kumar, S.K. Seshadri, Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios, Biomed. Mater., 4 (2009) 045010–045019.
  32. E.M. Rivera, M. Araiza, W. Brostow, V.M. Castaño, J.R. Díaz- Estrada, R. Hernández, J.R. Rodríguez, Synthesis of hydroxyapatite from eggshells, Mater. Lett., 41 (1999) 128–134.
  33. R. Morsy, M. Elsayed, R. Krause-Rehberg, G. Dlubek, T. Elnimr, Positron annihilation spectroscopic study of hydrothermally synthesized fine nanoporous hydroxyapatite agglomerates, J. Eur. Ceram. Soc., 30 (2010) 1897–1901.
  34. G. Qian, W. Liu, L. Zheng, L. Liu, Facile synthesis of three dimensional porous hydroxyapatite using carboxymethylcellulose as a template, Results Phys., 7 (2017) 1623–1627.
  35. N.E. Tari, M.M.K. Motlagh, B. Sohrabi, Synthesis of hydroxyapatite particles in catanionic mixed surfactants template, Mater. Chem. Phys., 131 (2011) 132–135.
  36. S. Mehdi, K. Alireza, H. Aydin, K. Semra, Preparation, characterization and application of a CTAB modified nanoclay for the adsorption of an herbicide from aqueous solutions: kinetic and equilibrium studies, C. R. Chim., 18 (2015) 204–214.
  37. Y. Park, Z. Sun, G.A. Ayoko, R.L. Frost, Removal of herbicides from aqueous solutions by modified forms of montmorillonite, J. Colloid Interface Sci., 415 (2014) 127–132.
  38. A. Cabrera, C. Trigo, L. Cox, R. Celis, M.C. Hermosin, J. Cornejo, W.C. Koskinen, Sorption of the herbicide aminocyclopyrachlor by cation-modified clay minerals, Eur. J. Soil Sci., 63 (2012) 694–700.
  39. A.F. Hassan, R. Hrdina, Department, Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies, Int. J. Biol. Macromol., 109 (2018) 507–516.
  40. Y. El-Nahhal, Adsorption mechanism of chloroacetanilide herbicides to modified montmorillonite, J. Environ. Sci. Health, Part B, 38 (2003) 591–604.
  41. B. Derkus, Y.E. Arslan, K.C. Emregul, E. Emregul, Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatitefor thrombin detection in neuroclinic, Talanta, 158 (2016) 100–109.
  42. Y. Azis, M. Adrian, C.D. Alfarisi, Khairat, R.M. Sri, Synthesis of hydroxyapatite nanoparticles from egg shells by sol–gel method, IOP Conf. Ser.: Mater. Sci. Eng., 345 (2018) 1–6, doi: 10.1088/1757–899X/345/1/1012040.
  43. A.F. Hassan, E. Hassan, A.M. Abdel-Mohsen, Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons, J. Taiwan Inst. Chem. Eng., 75 (2017) 299–306.
  44. L. Deng, Y. Su, S. Hua, X. Wang, X. Zhu, Sorption and desorption of lead(II) from wastewater by green algae Cladophora fascicularis, J. Hazard. Mater., 143 (2007) 220–225.
  45. S. Sasikumar, R. Vijayaraghavan, Low temperature synthesis of nanocrystalline hydroxyapatite from egg shells by combustion method, Trends Biomater. Artif. Organs, 19 (2006) 70–73.
  46. P.H. Jai, J.S. Wook, Y.J. Kyu, K.B. Gil, L.S. Mok, Removal of heavy metals using waste egg shell, J. Environ. Sci., 19 (2007) 1436–1441.
  47. S. Meski, S. Ziani, H. Khireddine, S. Boudboub, S. Zaidi, Factorial design analysis for sorption of zinc on hydroxyapatite, J. Hazard. Mater., 186 (2011) 1007–1017.
  48. E.E. Berry, The structure and composition of some calciumdeficient apatites, J. Inorg. Nucl. Chem., 29 (1967) 317–327.
  49. Q. Hang, J. Xiao, Z. Dayong, Z. Beiwei, Q. Lei, M. Chun, O. Yihang, M. Yoshiyuki, Removal of heavy metals in aqueous solution using Antarctic Krill chitosan/hydroxyapatite composite, Fibers Polym., 14 (2013) 1134–1140.
  50. S. Rayanaud, E. Champion, D. Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I synthesis, characterization and thermal stability of powders, Biomaterials, 23 (2002) 1065–1072.
  51. T.A. Kuriakose, S.N. Kalkura, M. Palanichamy, D. Arivuoli, K. Dierks, G. Bocelli,. Synthesis of stoichiometric nanocrystalline hydroxyapatite by ethanol based sol–gel technique at low temperature, J. Cryst. Growth, 263 (2004) 517–523.
  52. I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh, M. Zakeri, Synthesis of nanocrystalline hydroxyapatite by using precipitation method, J. Alloys Compd., 430 (2007) 330–333.
  53. G. Neha, A.K. Kushwaha, M.C. Chattopadhyaya, Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, J. Taiwan Inst. Chem. Eng., 43 (2012) 125–131.
  54. N.P. Katuwavila, A.D.L.C. Perera, S.R. Samarakoon, P. Soysa, V. Karunaratne, G.A.J. Amaratunga, D.N. Karunaratne, Chitosan-alginate nanoparticle system efficiently delivers doxorubicin to MCF-7 cells, J. Nanomater., 2016 ( 2016) 1–12, doi: 10.1155/2016/3178904.
  55. A.F. Hassan, A.M. Abdel-Mohsen, M.G.F. Moustafa, Comparative study of calcium alginate, activated carbon and their composite beads on methylene blue adsorption, Carbohydr. Polym., 102 (2014) 192–198.
  56. B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass, J. Hazard. Mater., 164 (2009) 870–875.
  57. A.S. Taher, M.M. Ahmad, A.H. Mohamed, E.E. Bahgat, Development of nanohydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment, J. Taiwan Inst. Chem. Eng., 45 (2014) 1571–1577.
  58. C. Namasivayam, K. Ranganathan, Removal of Pb2+, Cd2+, Ni2+ and mixture of metal-ions by adsorption onto waste Fe3+, Cr3+ hydroxide and fixed-bed studies, Environ. Technol., 16 (1995) 851–860.
  59. Z. Aliakbaria, H. Younesia, A.A. Ghoreyshib, N. Bahramifara, A. Heidaric, Sewage sludge-based activated carbon: its application for hexavalent chromium from synthetic and electroplating wastewater in batch and fixed-bed column adsorption, Desal. Water Treat., 93 (2017) 61–73.
  60. K. Rathinam, M. Sankaran, Facile synthesis of cross linkedchitosan– grafted-poly aniline composite and its Cr6+ uptake studies, Int. J. Biol. Macromol., 67 (2014) 210–219.
  61. M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf, Biocomposite efficiency for Cr(VI) adsorption: kinetic, equilibrium and thermodynamics studies, J. Environ. Chem. Eng., 5 (2017) 400–411.
  62. Z. Ren, G. Zhang, C.J. Paul, Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent, J. Colloid Interface Sci., 358 (2011) 230–237.
  63. Q. Manzoor, A. Sajid, T. Hussain, M. Iqbal, M. Abbas, J. Nisar, Efficiency of immobilized Zea mays biomass for the adsorption of chromium from simulated media and tannery wastewater, J. Mater. Res. Technol., 8 (2019) 75–86.
  64. M.F. Elkady, M.M. Mahmoud, H.M. Abd-El-Rahman, Kinetic approach for cadmium sorption using microwave synthesized nanohydroxyapatite, J. Non-Cryst. Solids, 357 (2011) 1118–1129.
  65. L. Xiaoli, Q. Yongxin, L. Yanfeng, Z. Yun, H. Xinghua, W. Yonghuan, Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb2+ in aqueous solutions by using a batch and continuous systems, Bioresour. Technol., 142 (2013) 611–619.
  66. A.F. Hassan, Enhanced adsorption of 2,4-dichlorophenoxyacetic acid from aqueous medium by graphene oxide/alginate composites, Desal. Water Treat., 141 (2019) 187–196.
  67. A.F. Hassan, R. Bulánek, Preparation and characterization of thiosemicarbazide functionalized graphene oxide as nanoadsorbent sheets for removal of lead cations, Int. J. Environ. Sci. Technol., 16 (2019) 6207–6216.
  68. A.M. Abdel-Mohsen, J. Jancar, L. Kalina, A.F. Hassan, Comparative study of chitosan and silk fibroin staple microfibers on removal of chromium(VI): fabrication, kinetics and thermodynamic studies, Carbohydr. Polym., 234 (2020) 115861–115872.
  69. D. Yang, L. Li, B. Chen, S. Shi, J. Nie, G. Ma, Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal, Polymer, 163 (2019) 74–85.
  70. A. Maleki, B. Hayati, M. Naghizadeh, W.S. Joo, Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution, J. Ind. Eng. Chem., 28 (2015) 211–216.
  71. J. Haniyeh, A. Paolo, C. Domenico, P. Antonio, Synthesis of amino-functionalized MIL-101 (Cr) MOF for hexavalent chromium adsorption from aqueous solutions, Environ. Nanotechnol. Monit. Manage., 14 (2020) 100300–100310.
  72. W. Zhifei, S. Qianqian, X. Jinbo, J. Husheng, X. Bingshe, L. Xuguang, Q. Li, Annealing temperature effect on 3D hierarchically porous NiO/Ni for removal of trace hexavalent chromium, Mater. Chem. Phys., 240 (2020) 122140–122149.
  73. C. Jung, J. Heo, J. Han, N. Her, S.J. Lee, J. Oh, J. Ryu, Y. Yoon, Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes, Sep. Purif. Technol., 106 (2013) 63–71.
  74. A.F. Hassan, F. Alafid, H. Radim, Preparation of melamine formaldehyde/nanozeolite Y composite based on nanosilica extracted from rice husks by sol–gel method: adsorption of lead(II) ion, J. Sol–Gel Sci. Technol., 95 (2020) 211–222.