References
- A. Rashid, H.N. Bhatti, M. Iqbal, S. Noreen, Fungal biomass
composite with bentonite efficiency for nickel and zinc
adsorption: a mechanistic study, Ecol. Eng., 91 (2016)
459–471.
- K. Abida, N.B. Haq, M.K. Gillian, Re-use of agricultural wastes
for the removal and recovery of Zr(IV) from aqueous solutions,
J. Taiwan Inst. Chem. Eng., 59 (2016) 330–340.
- D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sánchez, Graphenebased
microbots for toxic heavy metal removal and recovery
from water, Nano Lett., 16 (2016) 2860–2866.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- I. Mobasherpour, E. Salahi, M. Pazouki, Comparative of the
removal of Pb2+, Cd2+ and Ni2+ by nanocrystallite hydroxyapatite
from aqueous solutions: adsorption isotherm study, Arabian J.
Chem., 5 (2012) 439–446.
- G. Fahimeh, M. Ahmad, E. Rahmatollah, Lead sorption
properties of nanohydroxyapatite alginate composite adsorbents,
Chem. Eng. J., 200–202 (2012) 471–479.
- G.N. Kousalya, M.G. Rajiv, S. Meenakshi, Removal of toxic Cr6+
ions from aqueous solution using nanohydroxyapatite based
chitin and chitosan hybrid composites, Adsorpt. Sci. Technol.,
28 (2010) 49–64.
- R.C. Saidur, K.Y. Ernest, Arsenic and chromium removal by
mixed magnetite maghemite nanoparticles and the effect
of phosphate on removal, J. Environ. Manage., 91 (2010)
2238–2247.
- S. Mor, K. Ravindra, N.R. Bishnoi, Adsorption of chromium
from aqueous solution by activated alumina and activated
charcoal, Bioresour. Technol., 98 (2007) 954–957.
- M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen,
A. Ghaffar, G.A. Shar, M. Asif Tahir, M. Iqbal, Vibrio, Bioluminescence
inhibition assay for ecotoxicity assessment:
a review, Sci. Total Environ., 626 (2018) 1295–1309.
- M. Iqbal, Vicia faba bioassay for environmental toxicity
monitoring: a review, Chemosphere, 144 (2016) 785–802.
- L.V.A. Gurgel, J.C.G. de Melo, J.C. de Lena, F.L. Gil, Adsorption
of chromium(VI) ion from aqueous solution by succinylated
mercerized cellulose functionalized with quaternary
ammonium groups, Bioresour. Technol., 100 (2009) 3214–3220.
- C. Liu, H. Xu, H. Li, L. Liu, L. Xu, Z. Ye, Efficient degradation
of methylene blue dye by catalytic oxidation using the
Na8Nb6O19·13H2O/H2O2 system, Korean J. Chem. Eng., 28 (2011)
1126–1132.
- M. Alaqarbeh, M. Shammout, A. Awwad, Nano platelets
kaolinite for the adsorption of toxic metal ions in the
environment, Chem. Int., 6 (2020) 49–55.
- A.M. Alasadi, F.I. Khaili, A.M. Awwad, Adsorption of Cu(II),
Ni(II) and Zn(II) ions by nano kaolinite: thermodynamics and
kinetics studies, Chem. Int., 5 (2019) 2258–2268.
- F. Minas, B.S. Chandravanshi, S. Leta, Chemical precipitation
method for chromium removal and its recovery from tannery
wastewater in Ethiopia, Chem. Int., 3 (2017) 291–305.
- C.P. Ukpaka, BTX degradation: the concept of microbial
integration, Chem. Int., 3 (2017) 8–18.
- K.G. Mc, M.S. Otterburn, A.G. Sweeney, The removal of colour
from effluent using various adsorbents–III. Silica: rate process,
Water Res., 14 (1980) 15–20.
- D. Lijing, Z. Zhiliang, Q. Yanling, Z. Jianfu, Removal of lead
from aqueous solution by hydroxyapatite/magnetite composite
adsorbent, Chem. Eng. J., 165 (2010) 827–834.
- G.N. Kousalya, G.M. Rajiv, S.C. Sairam, S. Meenakshi, Synthesis
of nanohydroxyapatite chitin/chitosan hybrid biocomposites
for the removal of Fe3+, Carbohydr. Polym., 82 (2010) 594–599.
- C. Stötzel, F.A. Müller, F. Reinert, F. Niederdraenk, J.E. Barralet,
U. Gbureck, Ion adsorption behaviour of hydroxyapatite with
different crystallinities, Colloids Surf., B, 74 (2009) 91–95.
- D.L. Goloshchapov, V.M. Kashkarov, N.A. Rumyantseva,
P.V. Seredinn, A.S. Lenshin, B.L. Agapov, E.P. Domashevskaya,
Synthesis of nanocrystalline hydroxyapatite by precipitation
using hen’s egg shell, Ceram. Int., 39 (2013) 4539–4549.
- F. Granados-Correa, J. Vilchis-Granados, M. Jiménez-Reyes,
L.A. Quiroz-Granados, Adsorption behaviour of La3+ and
Eu3+ ions from aqueous solutions by hydroxyapatite: kinetic,
isotherm and thermodynamic studies, J. Chem., 2013 (2013) 1–9,
doi: 10.1155/2013/751696.
- C. Limei, H. Lihua, G. Xiaoyao, Z. Yakun, W. Yaoguang, W. Qin,
D. Bin, Kinetic, isotherm and thermodynamic investigations
of Cu2+ adsorption onto magnesium hydroxyapatite/ferro
ferric oxide nanocomposites with easy magnetic separation
assistance, J. Mol. Liq., 198 (2014) 157–163.
- R.R. Sheha, Sorption behavior of Zn2+ ions on synthesized
hydroxyapatites, J. Colloid Interface Sci., 310 (2007) 18–26.
- R.M. Khaled, M.E. Zenab, A.S. Aida, In vitro properties of
nanohydroxyapatite/chitosan biocomposites, Ceram. Int.,
37 (2011) 3265–3271.
- R.J. Narayan, P.N. Kumta, C. Sfeir, D.-H. Lee, D. Olton,
D.W. Choi, Nanostructured ceramics in medical devices:
applications and prospects, JOM, 56 (2004) 38–43.
- A. Krestou, A. Xenidis, D. Panias, Mechanism of aqueous
uranium(VI) uptake by hydroxyapatite, Miner. Eng., 17 (2004)
373–381.
- S. Sugiyama, H. Matsumoto, H. Hayashi, J.B. Moffat, Sorption
and ion exchange properties of barium hydroxyapatite with
divalent cations, Colloids Surf., A, 169 (2000) 17–26.
- A. Ruksudjarit, K. Pengpat, G. Rujijanagul, T. Tunkasiri, Synthesis
and characterization of nanocrystalline hydroxyapatite from
natural bovine bone, Curr. Appl. Phys., 8 (2008) 270–272.
- A. Siddharthan, T.S. Kumar, S.K. Seshadri, Synthesis and
characterization of nanocrystalline apatites from eggshells at
different Ca/P ratios, Biomed. Mater., 4 (2009) 045010–045019.
- E.M. Rivera, M. Araiza, W. Brostow, V.M. Castaño, J.R. Díaz-
Estrada, R. Hernández, J.R. Rodríguez, Synthesis of hydroxyapatite
from eggshells, Mater. Lett., 41 (1999) 128–134.
- R. Morsy, M. Elsayed, R. Krause-Rehberg, G. Dlubek, T. Elnimr,
Positron annihilation spectroscopic study of hydrothermally
synthesized fine nanoporous hydroxyapatite agglomerates,
J. Eur. Ceram. Soc., 30 (2010) 1897–1901.
- G. Qian, W. Liu, L. Zheng, L. Liu, Facile synthesis of three
dimensional porous hydroxyapatite using carboxymethylcellulose
as a template, Results Phys., 7 (2017) 1623–1627.
- N.E. Tari, M.M.K. Motlagh, B. Sohrabi, Synthesis of
hydroxyapatite particles in catanionic mixed surfactants
template, Mater. Chem. Phys., 131 (2011) 132–135.
- S. Mehdi, K. Alireza, H. Aydin, K. Semra, Preparation,
characterization and application of a CTAB modified nanoclay
for the adsorption of an herbicide from aqueous solutions:
kinetic and equilibrium studies, C. R. Chim., 18 (2015) 204–214.
- Y. Park, Z. Sun, G.A. Ayoko, R.L. Frost, Removal of herbicides
from aqueous solutions by modified forms of montmorillonite,
J. Colloid Interface Sci., 415 (2014) 127–132.
- A. Cabrera, C. Trigo, L. Cox, R. Celis, M.C. Hermosin, J. Cornejo,
W.C. Koskinen, Sorption of the herbicide aminocyclopyrachlor
by cation-modified clay minerals, Eur. J. Soil Sci., 63 (2012)
694–700.
- A.F. Hassan, R. Hrdina, Department, Chitosan/nanohydroxyapatite
composite based scallop shells as an efficient
adsorbent for mercuric ions: Static and dynamic adsorption
studies, Int. J. Biol. Macromol., 109 (2018) 507–516.
- Y. El-Nahhal, Adsorption mechanism of chloroacetanilide
herbicides to modified montmorillonite, J. Environ. Sci. Health,
Part B, 38 (2003) 591–604.
- B. Derkus, Y.E. Arslan, K.C. Emregul, E. Emregul, Enhancement
of aptamer immobilization using egg shell-derived nano-sized
spherical hydroxyapatitefor thrombin detection in neuroclinic,
Talanta, 158 (2016) 100–109.
- Y. Azis, M. Adrian, C.D. Alfarisi, Khairat, R.M. Sri, Synthesis
of hydroxyapatite nanoparticles from egg shells by sol–gel
method, IOP Conf. Ser.: Mater. Sci. Eng., 345 (2018) 1–6,
doi: 10.1088/1757–899X/345/1/1012040.
- A.F. Hassan, E. Hassan, A.M. Abdel-Mohsen, Adsorption
and photocatalytic detoxification of diazinon using iron and
nanotitania modified activated carbons, J. Taiwan Inst. Chem.
Eng., 75 (2017) 299–306.
- L. Deng, Y. Su, S. Hua, X. Wang, X. Zhu, Sorption and desorption
of lead(II) from wastewater by green algae Cladophora
fascicularis, J. Hazard. Mater., 143 (2007) 220–225.
- S. Sasikumar, R. Vijayaraghavan, Low temperature synthesis
of nanocrystalline hydroxyapatite from egg shells by combustion
method, Trends Biomater. Artif. Organs, 19 (2006)
70–73.
- P.H. Jai, J.S. Wook, Y.J. Kyu, K.B. Gil, L.S. Mok, Removal of
heavy metals using waste egg shell, J. Environ. Sci., 19 (2007)
1436–1441.
- S. Meski, S. Ziani, H. Khireddine, S. Boudboub, S. Zaidi,
Factorial design analysis for sorption of zinc on hydroxyapatite,
J. Hazard. Mater., 186 (2011) 1007–1017.
- E.E. Berry, The structure and composition of some calciumdeficient
apatites, J. Inorg. Nucl. Chem., 29 (1967) 317–327.
- Q. Hang, J. Xiao, Z. Dayong, Z. Beiwei, Q. Lei, M. Chun,
O. Yihang, M. Yoshiyuki, Removal of heavy metals in aqueous
solution using Antarctic Krill chitosan/hydroxyapatite
composite, Fibers Polym., 14 (2013) 1134–1140.
- S. Rayanaud, E. Champion, D. Assollant, P. Thomas, Calcium
phosphate apatites with variable Ca/P atomic ratio I synthesis,
characterization and thermal stability of powders, Biomaterials,
23 (2002) 1065–1072.
- T.A. Kuriakose, S.N. Kalkura, M. Palanichamy, D. Arivuoli,
K. Dierks, G. Bocelli,. Synthesis of stoichiometric nanocrystalline
hydroxyapatite by ethanol based sol–gel technique
at low temperature, J. Cryst. Growth, 263 (2004) 517–523.
- I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh, M. Zakeri,
Synthesis of nanocrystalline hydroxyapatite by using precipitation
method, J. Alloys Compd., 430 (2007) 330–333.
- G. Neha, A.K. Kushwaha, M.C. Chattopadhyaya, Adsorptive
removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan
composite from aqueous solution, J. Taiwan Inst. Chem. Eng.,
43 (2012) 125–131.
- N.P. Katuwavila, A.D.L.C. Perera, S.R. Samarakoon, P. Soysa,
V. Karunaratne, G.A.J. Amaratunga, D.N. Karunaratne,
Chitosan-alginate nanoparticle system efficiently delivers
doxorubicin to MCF-7 cells, J. Nanomater., 2016 ( 2016) 1–12,
doi: 10.1155/2016/3178904.
- A.F. Hassan, A.M. Abdel-Mohsen, M.G.F. Moustafa, Comparative
study of calcium alginate, activated carbon and their
composite beads on methylene blue adsorption, Carbohydr.
Polym., 102 (2014) 192–198.
- B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene
blue from aqueous solution by garlic peel, an agricultural waste
biomass, J. Hazard. Mater., 164 (2009) 870–875.
- A.S. Taher, M.M. Ahmad, A.H. Mohamed, E.E. Bahgat,
Development of nanohydroxyapatite/chitosan composite for
cadmium ions removal in wastewater treatment, J. Taiwan Inst.
Chem. Eng., 45 (2014) 1571–1577.
- C. Namasivayam, K. Ranganathan, Removal of Pb2+, Cd2+, Ni2+
and mixture of metal-ions by adsorption onto waste Fe3+, Cr3+
hydroxide and fixed-bed studies, Environ. Technol., 16 (1995)
851–860.
- Z. Aliakbaria, H. Younesia, A.A. Ghoreyshib, N. Bahramifara,
A. Heidaric, Sewage sludge-based activated carbon: its
application for hexavalent chromium from synthetic and
electroplating wastewater in batch and fixed-bed column
adsorption, Desal. Water Treat., 93 (2017) 61–73.
- K. Rathinam, M. Sankaran, Facile synthesis of cross linkedchitosan–
grafted-poly aniline composite and its Cr6+ uptake
studies, Int. J. Biol. Macromol., 67 (2014) 210–219.
- M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf, Biocomposite
efficiency for Cr(VI) adsorption: kinetic, equilibrium
and thermodynamics studies, J. Environ. Chem. Eng., 5 (2017)
400–411.
- Z. Ren, G. Zhang, C.J. Paul, Adsorptive removal of arsenic from
water by an iron-zirconium binary oxide adsorbent, J. Colloid
Interface Sci., 358 (2011) 230–237.
- Q. Manzoor, A. Sajid, T. Hussain, M. Iqbal, M. Abbas, J. Nisar,
Efficiency of immobilized Zea mays biomass for the adsorption
of chromium from simulated media and tannery wastewater,
J. Mater. Res. Technol., 8 (2019) 75–86.
- M.F. Elkady, M.M. Mahmoud, H.M. Abd-El-Rahman, Kinetic
approach for cadmium sorption using microwave synthesized
nanohydroxyapatite, J. Non-Cryst. Solids, 357 (2011) 1118–1129.
- L. Xiaoli, Q. Yongxin, L. Yanfeng, Z. Yun, H. Xinghua, W.
Yonghuan, Novel magnetic beads based on sodium alginate
gel crosslinked by zirconium(IV) and their effective removal
for Pb2+ in aqueous solutions by using a batch and continuous
systems, Bioresour. Technol., 142 (2013) 611–619.
- A.F. Hassan, Enhanced adsorption of 2,4-dichlorophenoxyacetic
acid from aqueous medium by graphene oxide/alginate
composites, Desal. Water Treat., 141 (2019) 187–196.
- A.F. Hassan, R. Bulánek, Preparation and characterization of
thiosemicarbazide functionalized graphene oxide as nanoadsorbent
sheets for removal of lead cations, Int. J. Environ. Sci.
Technol., 16 (2019) 6207–6216.
- A.M. Abdel-Mohsen, J. Jancar, L. Kalina, A.F. Hassan,
Comparative study of chitosan and silk fibroin staple
microfibers on removal of chromium(VI): fabrication, kinetics
and thermodynamic studies, Carbohydr. Polym., 234 (2020)
115861–115872.
- D. Yang, L. Li, B. Chen, S. Shi, J. Nie, G. Ma, Functionalized
chitosan electrospun nanofiber membranes for heavy-metal
removal, Polymer, 163 (2019) 74–85.
- A. Maleki, B. Hayati, M. Naghizadeh, W.S. Joo, Adsorption
of hexavalent chromium by metal organic frameworks from
aqueous solution, J. Ind. Eng. Chem., 28 (2015) 211–216.
- J. Haniyeh, A. Paolo, C. Domenico, P. Antonio, Synthesis
of amino-functionalized MIL-101 (Cr) MOF for hexavalent
chromium adsorption from aqueous solutions, Environ.
Nanotechnol. Monit. Manage., 14 (2020) 100300–100310.
- W. Zhifei, S. Qianqian, X. Jinbo, J. Husheng, X. Bingshe,
L. Xuguang, Q. Li, Annealing temperature effect on 3D
hierarchically porous NiO/Ni for removal of trace hexavalent
chromium, Mater. Chem. Phys., 240 (2020) 122140–122149.
- C. Jung, J. Heo, J. Han, N. Her, S.J. Lee, J. Oh, J. Ryu, Y. Yoon,
Hexavalent chromium removal by various adsorbents:
powdered activated carbon, chitosan, and single/multi-walled
carbon nanotubes, Sep. Purif. Technol., 106 (2013) 63–71.
- A.F. Hassan, F. Alafid, H. Radim, Preparation of melamine
formaldehyde/nanozeolite Y composite based on nanosilica
extracted from rice husks by sol–gel method: adsorption of
lead(II) ion, J. Sol–Gel Sci. Technol., 95 (2020) 211–222.