References
- S. Gaw, K.V. Thomas, T.H. Hutchinson, Sources, impacts
and trends of pharmaceuticals in the marine and coastal
environment, Philos. Trans. R. Soc. London, Ser. B, 369 (2014)
1–11, doi: 10.1098/rstb.2013.0572.
- M. Thiruppathi, P.S. Kumar, P. Devendran, C. Ramalingan,
M. Swaminathan, E. Nagarajan, Ce@TiO2 nanocomposites:
an efficient, stable and affordable photocatalyst for the
photodegradation of diclofenac sodium, J. Alloys Compd.,
735 (2018) 728–734.
- M. Hodjat, S. Rahmani, F. Khan, K. Niaz, M. Navaei-Nigjeh,
S. Mohammadi Nejad, M. Abdollahi, Environmental toxicants,
incidence of degenerative diseases, and therapies from the
epigenetic point of view, Arch. Toxicol., 91 (2017) 2577–2597.
- M.J. Benotti, R.A. Trenholm, B.J. Vanderford, J.C. Holady,
B.D. Stanford, S.A. Snyder, Pharmaceuticals and endocrine
disrupting compounds in US drinking water, Environ. Sci.
Technol., 43 (2008) 597–603.
- M. Crane, C. Watts, T. Boucard, Chronic aquatic environmental
risks from exposure to human pharmaceuticals, Sci. Total
Environ., 367 (2006) 23–41.
- J.L. Oaks, M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer,
B.A. Rideout, H.L. Shivaprasad, S. Ahmed, M.J.I. Chaudhry,
M. Arshad, S. Mahmood, A. Ali, A.A. Khan, Diclofenac residues
as the cause of vulture population decline in Pakistan, Nature,
427 (2004) 630–633.
- L. Lonappan, S.K. Brar, R.K. Das, M. Verma, R.Y. Surampalli,
Diclofenac and its transformation products: environmental
occurrence and toxicity - a review, Environ. Int., 96 (2016)
127–138.
- P. Verlicchi, A. Galletti, M. Petrovic, D. Barceló, Hospital
effluents as a source of emerging pollutants: an overview of
micropollutants and sustainable treatment options, J. Hydrol.,
389 (2010) 416–428.
- M.D.G. de Luna, W. Budianta, K.K.P. Rivera, R.O. Arazo,
Removal of sodium diclofenac from aqueous solution by
adsorbents derived from cocoa pod husks, J. Environ. Chem.
Eng., 5 (2017) 1465–1474.
- B. Bonnefille, E. Gomez, F. Courant, A. Escande, H. Fenet,
Diclofenac in the marine environment: a review of its occurrence
and effects, Mar. Pollut. Bull., 131 (2018) 496–506.
- N. Vieno, M. Sillanpää, Fate of diclofenac in municipal
wastewater treatment plant—a review, Environ. Int., 69 (2014)
28–39.
- M. Jiang, W. Yang, Z. Zhang, Z. Yang, Y. Wang, Adsorption of
three pharmaceuticals on two magnetic ion-exchange resins,
J. Environ. Sci., 31 (2015) 226–234.
- E. Płuciennik-Koropczuk, Non-steroid anti-infflamatory drugs
in municipal wastewater and surface waters, Civil Environ.
Eng. Rep., 14 (2014) 63–74.
- J. Wang, S. Wang, Removal of pharmaceuticals and personal
care products (PPCPs) from wastewater: a review, J. Environ.
Manage., 182 (2016) 620–640.
- S. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti, Ozonation
and advanced oxidation technologies to remove endocrine
disrupting chemicals (EDCs) and pharmaceuticals and personal
care products (PPCPs) in water effluents, J. Hazard. Mater.,
149 (2007) 631–642.
- S.-W. Nam, C. Jung, H. Li, M. Yu, J.R.V. Flora, L.K. Boateng,
N. Her, K.-D. Zoh, Y. Yoon, Adsorption characteristics of
diclofenac and sulfamethoxazole to graphene oxide in aqueous
solution, Chemosphere, 136 (2015) 20–26.
- Z. Hasan, N.A. Khan, S.H. Jhung, Adsorptive removal of
diclofenac sodium from water with Zr-based metal–organic
frameworks, Chem. Eng. J., 284 (2016) 1406–1413.
- R. Karaman, M. Khamis, M. Quried, R. Halabieh, I. Makharzeh,
A. Manassra, J. Abbadi, A. Qtait, S.A. Bufo, A. Nasser, S. Nir,
Removal of diclofenac potassium from wastewater using claymicelle
complex, Environ. Technol., 33 (2012) 1279–1287.
- L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of
pharmaceutical pollutants onto graphene nanoplatelets, Chem.
Eng. J., 248 (2014) 191–199.
- L.A. Chacra, M.A. Sabri, T.H. Ibrahim, M.I. Khamis,
N.M. Hamdan, S. Al-Asheh, M. AlRefai, C. Fernandez,
Application of graphene nanoplatelets and graphene magnetite
for the removal of emulsified oil from produced water,
J. Environ. Chem. Eng., 6 (2018) 3018–3033.
- X. Wang, B. Liu, Q. Lu, Q. Qu, Graphene-based materials:
fabrication and application for adsorption in analytical
chemistry, J. Chromatogr. A, 1362 (2014) 1–15.
- S. Wang, H. Sun, H.-M. Ang, M. Tadé, Adsorptive remediation
of environmental pollutants using novel graphene-based
nanomaterials, Chem. Eng. J., 226 (2013) 336–347.
- A. Llinas, J.C. Burley, K.J. Box, R.C. Glen, J.M. Goodman,
Diclofenac solubility: independent determination of the
intrinsic solubility of three crystal forms, J. Med. Chem.,
50 (2007) 979–983.
- Y. Liu, Y.-J. Liu, Biosorption isotherms, kinetics and
thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.
- J. Thilagan, S. Gopalakrishnan, T. Kannadasan, Thermodynamic
study on adsorption of copper(II) ions in aqueous solution
by Chitosan blended with cellulose & cross linked by
formaldehyde, Chitosan immobilised on Red Soil, Chitosan
reinforced by Banana stem fibre, Int. J. Sci. Res. Eng. Technol.,
2 (2013) 28–36.
- H. Wei, S. Deng, Q. Huang, Y. Nie, B. Wang, J. Huang,
G. Yu, Regenerable granular carbon nanotubes/alumina hybrid
adsorbents for diclofenac sodium and carbamazepine removal
from aqueous solution, Water Res., 47 (2013) 4139–4147.
- C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thuea,
L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan,
G.L. Dotto, Microwave-assisted activated carbon from cocoa
shell as adsorbent for removal of sodium diclofenac and
nimesulide from aqueous effluents, J. Hazard. Mater., 289 (2015)
18–27.
- A. Khan, J. Wang, J. Li, X. Wang, Z. Chen, A. Alsaedi, T. Hayat,
Y. Chen, X. Wang, The role of graphene oxide and graphene
oxide-based nanomaterials in the removal of pharmaceuticals
from aqueous media: a review, Environ. Sci. Pollut. Res.,
24 (2017) 7938–7958.
- I. Jauris, C.F. Matos, C. Saucier, E.C. Lima, A.J.G. Zarbin,
S.B. Fagan, F.M. Machadod, I. Zanella, Adsorption of sodium
diclofenac on graphene: a combined experimental and
theoretical study, Phys. Chem. Chem. Phys.,18 (2016) 1526–1536.
- B.Y.Z. Hiew, L.Y. Lee, K.C. Lai, S. Gan, S. Thangalazhy-Gopakumar, G.-T. Pan, T.C.-K. Yang, Adsorptive decontamination
of diclofenac by three-dimensional graphenebased
adsorbent: response surface methodology, adsorption
equilibrium, kinetic and thermodynamic studies, Environ. Res.,
168 (2019) 241–253.
- K.-Y.A. Lin, H. Yang, W.-D. Lee, Enhanced removal of diclofenac
from water using a zeolitic imidazole framework functionalized
with cetyltrimethylammonium bromide (CTAB), RSC Adv.,
5 (2015) 81330–8134.
- X. Hu, Z. Cheng, Removal of diclofenac from aqueous solution
with multi-walled carbon nanotubes modified by nitric acid,
Chin. J. Chem. Eng., 23 (2015) 1551–1556.
- S. Larous, A.-H. Meniai, Adsorption of diclofenac from aqueous
solution using activated carbon prepared from olive stones,
Int. J. Hydrogen Energy, 41 (2016) 10380–10390.
- T.H. Ibrahim, M.A. Sabri, M.I. Khamis, Application of
multiwalled carbon nanotubes and its magnetite derivative for
emulsified oil removal from produced water, Environ. Technol.,
40 (2019) 3337–3350.
- R. Sips, On the structure of a catalyst surface, J. Chem. Phys.,
16 (1948) 490–495.
- Y. Yu, Y.-Y. Zhuang, Z.-H. Wang, Adsorption of watersoluble
dye onto functionalized resin, J. Colloid Interface Sci.,
242 (2001) 288–293.