References

  1. K.Q. Lu, Q. Quan, N. Zhang, Y.J. Xu, Multifarious roles of carbon quantum dots in heterogeneous photocatalysis, J. Energy Chem., 25 (2016) 927–935.
  2. A. Tyagi, K.M. Tripathi, N. Singh, S. Choudhary, R.K. Gupta, Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis, RSC. Adv., 6 (2016) 72423–72432.
  3. T. Pandiyarajan, R. Saravanan, B. Karthikeyan, F. Gracia, H.D. Mansilla, M.A. Gracia-Pinilla, R.V. Mangalaraja, Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties, J. Mater. Sci. - Mater. Electron., 28 (2017) 2448–2457.
  4. R. Shi, Z. Li, L.Z. Wu, H.J. Yu, L. Shang, Effect of nitrogen doping level on the performance of N-doped carbon quantum dot/TiO2 composites for photocatalytic hydrogen evolution, ChemSusChem, 10 (2017) 4650–4656.
  5. M.N. Chong, J.B. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  6. W. Wang, Y.R. Ni, Z.Z. Xu, One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application, J. Alloys Compd., 622 (2015) 303–308.
  7. A.J. Cai, Q. Wang, Y.F. Chang, X.P. Wang, Graphitic carbon nitride decorated with S,N co-doped graphene quantum dots for enhanced visible-light-driven photocatalysis, J. Alloys Compd., 692 (2017) 183–189.
  8. K. Antil-Martini, D. Contreras, J. Yanez, L. Cornejo, P. Santander, H.D. Mansilla, Solar light driven oxidation of gentisic acid on ZnO, Sol. Energy, 142 (2017) 26–32.
  9. K. Natarajan, H.C. Bajaj, R.J. Tayade, Direct sunlight driven photocatalytic activity of GeO2/monoclinic-BiVO4 nanoplate composites, Sol. Energy, 148 (2017) 87–97.
  10. H.J. Yu, R. Shi, Y.F. Zhao, I.N. Geoffrey, L.Z. Wu, C.H. Tung, T. Zhang, Smart utilization of carbon dots in semiconductor photocatalysis, Adv. Mater., 28 (2016) 9454–9477.
  11. S.N. Baker, G.N. Baker, Luminescent carbon nanodots: emergent nanolights, Angew. Chem. Int. Ed., 49 (2010) 6726–6744.
  12. S. Sharma, V. Dutta, P. Singh, P. Raizada, A.R. Sani, A.H. Bandegharaei, V.K. Thakur, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review, J. Cleaner Prod., 228 (2019) 755–769.
  13. V. Ramar, S. Moothattu, K. Balasubramanian, Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: a green way to remove pollution, Sol. Energy, 169 (2018) 120–127.
  14. Z.Y. Lin, J. Xiao, L.H. Li, P. Liu, C.X. Wang, G.W. Yang, Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution, Adv. Energy Mater., 6 (2016) 1501865, doi: 10.1002/aenm.201670027.
  15. H.T. Li, X.Y. Zhang, D.R. MacFarlane, Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol, Adv. Energy Mater., 5 (2015) 1401077, doi: 10.1002/ aenm.201401077.
  16. M. Han, S.J. Zhu, S.Y. Lu, Y.B. Song, T.L. Feng, S.Y. Tao, J.J. Liu, B. Yang, Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications, Nano Today, 19 (2018) 201–218.
  17. H.J. Yu, Y.F. Zhao, C. Zhou, L. Shang, Y. Peng, Y.H. Cao, L.Z. Wu, C.H. Tung, T.R. Zhang, Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A, 2 (2014) 3344–3351.
  18. A. Prasannan, T. Imae, One-pot synthesis of fluorescent carbon dots from orange waste peels, Ind. Eng. Chem. Res., 52 (2013) 15673–15678.
  19. F. Li, F. Tian, C.J. Liu, Z. Wang, Z.J. Du, R.X. Li, L. Zhang, Onestep synthesis of nanohybrid carbon dots and TiO2 composites with enhanced ultraviolet light active photocatalysis, RSC Adv., 5 (2015) 8389–8396.
  20. R. Atchudan, T.N.J.I. Edison, S. Perumal, R. Vinodh, Y.R. Lee, In-situ green synthesis of nitrogen-doped carbon dots for bioimaging and TiO2 nanoparticles@nitrogen-doped carbon composite for photocatalytic degradation of organic pollutants, J. Alloys Compd., 766 (2018) 12–24.
  21. M. Baidakova, A. Vul’, New prospects and frontiers of nanodiamond clusters, J. Phys. D: Appl. Phys., 40 (2007) 6300–6311.
  22. J.A. Zhang, D.S. Su, R. Blume, R. Schlogl, R. Wang, X.G. Yang, A. Gajovic, Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene, Angew. Chem. Int. Ed., 49 (2010) 8640–8644.
  23. V.N. Mochalin, I. Neitzel, B.J.M. Etzold, A. Peterson, G. Palmese, Y. Gogotsi, Covalent incorporation of aminated nanodiamond into an epoxy polymer network, ACS Nano, 5 (2011) 7494–7502.
  24. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V.G. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nanoscale magnetic sensing with an individual electronic spin in diamond, Nature, 455 (2008) 644–647.
  25. M.J. Sampaio, L.M. Pastrana-Martinez, A.M.T. Silva, J.G. Buijnsters, C. Han, C.G. Silva, S.A.C. Carabineiro, D.D. Dionysiou, J.L. Faria, Nanodiamond-TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light, RSC Adv., 5 (2015) 58363–58370.
  26. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds, Nat. Nanotechnol., 7 (2012) 11–23.
  27. Y.C. Lin, K.J. Sankaran, Y.C. Chen, C.V. Lee, H.C. Chen, I.N. Lin, N.H. Tai, Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature, Diamond Relat. Mater., 20 (2011) 191–195.
  28. Z.J. Qiao, J.J. Li, N.Q. Zhao, C.S. Shi, P. Nash, Graphitization and microstructure transformation of nanodiamond to onionlike carbon, Scr. Mater., 54 (2006) 225–229.
  29. V.L. Kuznetsov, I.L. Zilberberg, Y.V. Butenko, A.L. Chuvilin, B. Segall, Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface, J. Appl. Phys., 86 (1999) 863–870.
  30. S.R.J. Pearce, S.J. Henley, F. Claeyssens, P.W. May, K.R. Hallam, J.A. Smith, K.N. Rosser, Production of nanocrystalline diamond by laser ablation at the solid/liquid interface, Diamond Relat. Mater., 13 (2004) 661–665.
  31. S.Q. Wang, N.Q. Zhao, C.S. Shi, E. Liu, C. He, F. He, L.Y. Ma, In-situ grown CNTs modified SiO2/C composites as anode with improved cycling stability and rate capability for lithium storage, Appl. Surf. Sci., 433 (2018) 428–436.
  32. Q.H. Liang, W.J. Ma, Y. Shi, Z. Li, X.M. Yang, Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications, Carbon, 60 (2013) 421–428.
  33. M. Zheng, H. Ming, H. Huang, Y. Liu, Z.H. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability, New J. Chem., 36 (2012) 861–864.
  34. L. Shi, L. Liang, J. Ma, F.X. Wang, J.M. Sun, Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/g-C3N4 composite photocatalysts under visible light dagger, Dalton Trans., 43 (2014) 7236–7244.
  35. H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates, Chem. Mater., 21 (2009) 5563–5565.
  36. P.C. Hsu, H.T. Chang, Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups, Chem. Commun., 48 (2012) 3984–3986.
  37. H.F. Yin, Y. Cao, T. Fan, B. Qiu, M. Zhang, J. Yao, P.F. Li, X.H. Liu, S. Chen, Construction of carbon bridged TiO2/CdS tandem Z-scheme heterojunctions toward efficient photocatalytic antibiotic degradation and Cr(VI) reduction, J. Alloy Compd., 824 (2020) 153915, doi: 10.1016/j.jallcom.2020.153915.
  38. X. Yang, H. Li, Y. Li, X. Lv, G. Zou, Synthesis and optical properties of purified translucent, orthorhombic boron nitride films, J. Cryst. Growth, 312 (2010) 3434–3437.
  39. L.X. Su, Q.Z. Huang, Q. Lou, Z.Y. Liu, J.L. Sun, Z.T. Zhang, S.R. Qin, X. Li, J.H. Zang, L. Dong, C.X. Shan, Effective light scattering and charge separation in nanodiamond@g-C3N4 for enhanced visible-light hydrogen evolution, Carbon, 139 (2018) 164–171.
  40. Z.A.C. Ramli, N. Asim, W.N.R.W. Isahak, Z. Emdadi, N. Ahmad-Ludin, M.A. Yarmo, K. Sopian, Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2, Sci. World J., 8 (2014) 415136, doi: 10.1155/2014/415136.
  41. C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2 UV/TiO2 and VIS/TiO2 - comparative mechanistic and kinetic investigations, J. Photochem. Photobiol., A, 130 (2000) 35–47.
  42. Z.J. Zhang, T.T. Zheng, X.M. Li, J.Y. Xu, H.B. Zeng, Progress of carbon quantum dots in photocatalysis applications, Part. Part. Syst. Char., 33 (2016) 457–472.
  43. H.T. Li, X.D. He, Z.H. Kang, H. Huang, Y. Liu, J.L. Liu, S.Y. Lian, C.H.A. Tsang, X.B. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design, Angew. Chem. Int. Ed., 49 (2010) 4430–4434.
  44. R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis, J. Mater. Chem. A, 5 (2017) 3717–3734.
  45. R.L. Smith, R.Q. Zhang, Infinite horizon production planning in time-varying systems with convex production and inventory costs, Manage. Sci., 44 (1998) 1313–1320.
  46. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - a review, Appl. Catal., B, 49 (2004) 1–14.
  47. A. Sharma, M. Varshney, J. Park, T.K. Ha, K.H. Chae, H.J. Shin, XANES, EXAFS and photocatalytic investigations on copper oxide nanoparticles and nanocomposites, RSC Adv., 5 (2015) 21762–21771.
  48. K.V. Reich, E.D. Eidelman, Effect of electron-phonon interaction on field emission from carbon nanostructures, Europhys. Lett., 85 (2009) 47007, doi: 10.1209/0295-5075/85/47007.
  49. Z.Y. Lin, P. Liu, J.H. Yan, G.W. Yang, Matching energy levels between TiO2 and alpha-Fe2O3 in a core-shell nanoparticle for visible-light photocatalysis, J. Mater. Chem. A, 3 (2015) 14853–14863.
  50. D.D. Sang, H.D. Li, S.H. Cheng, Q.L. Wang, Q. Yu, Y.Z. Yang, Electrical transport behavior of n-ZnO nanorods/p-diamond heterojunction device at higher temperatures, J. Appl. Phys., 112 (2012) 036101, doi: 10.1063/1.4745039.
  51. J.X. Low, C.J. Jiang, B. Cheng, S. Wageh, A. Al-Ghamdi, J. Yu, A review of direct Z-scheme photocatalysts, Small Methods, 1 (2017) 1700080, doi: 10.1002/smtd.201700080.