References

  1. G.de F.S. Valente, R.C.S. Mendonça, J.A.M. Pereira, The efficiency of electrocoagulation using aluminum electrodes in treating wastewater from a dairy industry, Ciênc. Rural, 45 (2015) 1713–1719.
  2. G.F.S. Valente, R.C.S. Mendonça, J.A.M. Pereira, L.B. Felix, Artificial neural network prediction of chemical oxygen demand in dairy industry effluent treated by electrocoagulation, Sep. Purif. Technol., 132 (2014) 627–633.
  3. G.F.S. Valente, R.C.S. Mendonça, J.A.M. Pereira, L.B. Felix, R.C.S. Mendonça, J.A.M. Pereira, L.B. Felix, The efficiency of electrocoagulation in treating wastewater from a dairy industry, part I: iron electrodes, J. Environ. Sci. Health, Part B, 47 (2012) 355–361.
  4. A.T. de Matos, S.S. Abrahão, P.A.V. Lo Monaco, A.P. Sarmento, M. Matos, P. De Matos, Capacidade extratora de plantas em sistemas alagados utilizados no tratamento de águas residuárias de laticínios, Rev. Bras. Eng. Agrícola Ambient, 14 (2010) 1311–1317.
  5. B. Demirel, O. Yenigun, T.T. Onay, Anaerobic treatment of dairy wastewaters: a review, Process Biochem., 40 (2005) 2583–2595.
  6. N.Z. Al-Mutairi, M.F. Hamoda, I. Al-Ghusain, Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant, Bioresour. Technol., 95 (2004) 115–119.
  7. G.F.S. Valente, R.C.S. Mendonça, J.A.M. Pereira, Avaliação do custo de energia elétrica e de material no tratamento de efluente de laticínicos por eletrocoagulação, Rev. Bras. Technol. Agroind., 9 (2015), doi: 10.3895/rbta.v9n1.1753.
  8. M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, D.L. Cocke, Fundamentals, present and future perspectives of electrocoagulation, J. Hazard. Mater., 114 (2004) 199–210.
  9. T.L. Benazzi, M. Di Luccio, R.M. Dallago, J. Steffens, R. Mores, M.S. Do Nascimento, J. Krebs, G. Ceni, Continuous flow electrocoagulation in the treatment of wastewater from dairy industries, Water Sci. Technol., 73 (2016) 1418–1425.
  10. M.B. Bharath, B.M. Krishna, M. Kumar, B. Nayak, A review of electrocoagulation process for wastewater treatment, Int. J. Chem. Tech. Res., 11 (2018) 289–302.
  11. M. Reilly, A.P. Cooley, D. Tito, S.A. Tassou, M.K. Theodorou, Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters, Energy Procedia, 161 (2019) 343–351.
  12. M. Kobya, M. Bayramoglu, M. Eyvaz, Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections, J. Hazard. Mater., 148 (2007) 311–318.
  13. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  14. N. Acharya, C. Thakur, P.K. Chaudhari, Dataset on statistical reduction of COD by electrocoagulation process using RSM, Data Brief, 28 (2020), doi: 10.1016/j.dib.2019.104944.
  15. D. Wagle, C.J. Lin, T. Nawaz, H.J. Shipley, Evaluation and optimization of electrocoagulation for treating Kraft paper mill wastewater, J. Environ. Chem. Eng., 8 (2020), doi: 10.1016/j. jece.2019.103595.
  16. M.A. Osman, M. El-Naas, S. Al-Zuhair, Electrocoagulation treatment of reject brine effluent from Solvay process, Desal. Water Treat., 163 (2019) 325–335.
  17. A. Dura, C.B. Breslin, Electrocoagulation using stainless steel anodes: simultaneous removal of phosphates, Orange II and zinc ions, J. Hazard. Mater., 374 (2019) 152–158.
  18. E.K. Maher, K.N. O’Malley, J. Heffron, J. Huo, B.K. Mayer, Y. Wang, P.J. McNamara, Analysis of operational parameters, reactor kinetics, and floc characterization for the removal of estrogens via electrocoagulation, Chemosphere, 220 (2019) 1141–1149.
  19. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  20. M. Bennajah, Traitement des Rejets Industriels Liquide par Electrocoagulation (Électroflotation) en Réacteur Airlif, Institut National Polytechnique de Toulouse, 2007.
  21. Y. Yavuz, EC and EF processes for the treatment of alcohol distillery wastewater, Sep. Purif. Technol., 53 (2007) 135–140.
  22. A.K. Slavov, General characteristics and treatment possibilities of dairy wastewater -a review, Food Technol. Biotechnol., 55 (2017) 14–28.
  23. V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, Recent applications of electrocoagulation in treatment of water and wastewater—a review, Green Sustainable Chem., 03 (2013) 89–121.
  24. M.P.M. Combatt, R.C.S. Mendonça, G. De Freitas Silva Valente, C.M. Silva, G.d.F.S. Valente, C.M. Silva, Validação do processo de eletrocoagulação e avaliação da eletrodissolução de eletrodosno tratamento de efluentes de abatedouros de aves, Quim. Nova, 40 (2017) 447–453.
  25. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, DC, 2005.
  26. E. Lenzi, V. de Cinque Almeida, L.O.B. Favero, F.J. Becker, Detalhes da utilização do íon hidróxido, HO-, no tratamento de efluentes contaminados com metal pesado zinco, Acta Sci. Technol., 33 (2011) 313–322.
  27. S. Tchamango, C.P. Nanseu-Njiki, E. Ngameni, D. Hadjiev, A. Darchen, Treatment of dairy effluents by electrocoagulation using aluminium electrodes, Sci. Total Environ., 408 (2010) 947–952.
  28. H. Ghahremani, S. Bagheri, S.M. Hassani, M.R. Khoshchehreh, Treatment of dairy industry wastewater using an electrocoagulation process, Adv. Environ. Biol., 6 (2012) 1897–1901.
  29. H.C.L. Geraldino, J.I. Simionato, T.K.F. De Souza Freitas, J.C. Garcia, O. De Carvalho Júnior, C.J. Correr, Eficiência e custo operacional de um sistema de eletrofloculação aplicado ao tratamento de efluente da indústria de laticínio, Acta Sci. Technol., 37 (2015) 401–408.
  30. A.L. Torres-Sanchez, S.J. Lopez-Cervera, C. de la Rosa, M. Maldonado-Vega, M. Maldonado-Santoyo, J.M. Peralta- Hernandez, Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry wastewater, Int. J. Electrochem. Sci., 9 (2014) 6103–6112.
  31. I.A. Şengil, M. Özacar, Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes, J. Hazard. Mater., 137 (2006) 1197–1205.
  32. M.L.R. Foco, F.J. Cuba Terán, Avaliação do efeito da condutividade na eletro-coagulação-flotação aplicada ao tratamento físico-químico de águas residuárias, Semina: Ciências Exatas e Tecnológicas, Universidade Estadual de Londrina, 2007, p. 99.
  33. S.U. Khan, D.T. Islam, I.H. Farooqi, S. Ayub, F. Basheer, Hexavalent chromium removal in an electrocoagulation column reactor: process optimization using CCD, adsorption kinetics and pH modulated sludge formation, Process Saf. Environ. Prot., 122 (2019) 118–130.
  34. L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere, 229 (2019) 142–159.
  35. S. Ghosh (Nath), A. Debsarkar, A. Dutta, Technology alternatives for decontamination of arsenic-rich groundwater—a critical review, Environ. Technol. Innovation, 13 (2019) 277–303.
  36. Conselho Nacional Do Meio Ambiente (CONAMA), Resolução Conama No 396, de 3 de Abril de 2008 Publicada no DOU no 66, de 7 de Abril de 2008, Seção 1, 2008, p. 64–68.