References
- S.M. Gupta, I.M. Tripath, A review of TiO2 nanoparticles,
Chin. Sci. Bull., 56 (2011) 1639–1657.
- S.J. Tsai, S. Cheng, Effect of TiO2 crystalline structure in
photocatalytic degradation of phenolic contaminants, Catal.
Today, 33 (1997) 227–237.
- J.F. Porter, Y.G. Li, C.K. Chan, Effect of calcination on the
microstructural characteristics and photoreactivity of Degussa
P-25 TiO2, J. Mater. Sci., 34 (1999) 1523–1531.
- P. Górska, A. Zaleska, E. Kowalska, T. Klimczuk, J.W. Sobczak,
E. Skwarek, W. Janusz, J. Hupka, TiO2 photoactivity in vis and
UV light: the influence of calcination temperature and surface
properties, Appl. Catal., B, 84 (2008) 440–447.
- Z.B. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, Role of particle
size in nanocrystalline TiO2-based photocatalysts, J. Phys.
Chem. B, 102 (1998) 10871–10878.
- D.W. Bahnemann, S.N. Kholiskaya, R. Dillert, A.I. Kulak,
A.I. Kokorin, Photodestruction of dichloroacetic acid catalyzed
by nano-sized TiO2 particles, Appl. Catal., B, 36 (2002) 161–169.
- Y.X. Chen, K. Wang, L.P. Lou, Photodegradation of dye
pollutants on silica gel supported TiO2 particles under visible
light irradiation, J. Photochem. Photobiol., A, 163 (2004)
281–287.
- L. Liu, H. Zhao, J.M. Andino, Y. Li, Photocatalytic CO2 reduction
with H2O on TiO2 nanocrystals: comparison of anatase, rutile
and brookite polymorphs and exploration of surface chemistry,
ACS Catal., 2 (2012) 1817–1828.
- J.M. Hermann, Heterogeneous photocatalysis: fundamentals
and applications to the removal of various types of aqueous
pollutants, Catal. Today, 53 (1999) 115–129.
- D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile
phase transformation, J. Mater. Sci., 46 (2011) 855–874.
- P. Cheng, M.P. Zheng, Y.P. Jin, Q. Huang, M.Y. Gu, Preparation
and characterization of silica-doped titania photocatalyst
through sol–gel method, Mater. Lett., 57 (2003) 2989–2994.
- N. Bao, Z.T. Wei, Z.H. Ma, F. Liu, G.B. Yin, Si-doped mesoporous
TiO2 continuous fibers: preparation by centrifugal spinning
and photocatalytic properties, J. Hazard. Mater., 174 (2010)
129–136.
- A. Mahyar, M.A Behnajady, N. Modirshahla, Characterization
and photocatalytic activity of SiO2–TiO2 mixed oxide nanoparticles
prepared by sol–gel method, Ind. J. Chem., 49A (2010)
1593–1600.
- C. Su, K.F. Lin, Y.H. Lin, B.H. You, Preparation and characterization
of high-surface-area titanium dioxide by sol–gel
process, J. Porous Mater., 13 (2006) 251–258.
- A. Nilchi, S.J. Darzi, A.R. Mahjoub, S.R. Garmarodi, New TiO2/SiO2 nanocomposites-phase transformations and photocatalytic
studies, Colloids Surf., A, 361 (2010) 25–30.
- S. Photong, V. Boonamnuayvitaya, Preparation and characterization
of amine-functionalized SiO2/TiO2 films for formaldehyde
degradation, Appl. Surf. Sci., 255 (2009) 9311–9315.
- O. Khantamat, C.H. Li, S.P. Liu, T. Liu, H.J. Lee, O. Zenasni,
T.C. Lee, C. Cai, T.R. Lee, Broadening the photoresponsive
activity of anatase titanium dioxide particles via decoration
with partial gold shells, J. Colloid Interface Sci., 513 (2018)
715–725.
- N. Bao, G.L. Wu, J.J. Niu, Q.Z. Zhang, S. He, J. Wang, Wide
spectral response and enhanced photocatalytic activity of TiO2
continuous fibers modified with aminosilane coupling agents,
J. Alloys Compd., 599 (2014) 40–48.
- R. Klaysri, T. Tubchareon, P. Praserthdam, One-step synthesis
of amine-functionalized TiO2 surface for photocatalytic
decolorization under visible light irradiation, J. Ind. Eng.
Chem., 45 (2017) 229–236.
- X. Zhang, F. Zhang, K.-Y. Chan, Synthesis of titania–silica
mixed oxide mesoporous materials, characterization and
photocatalytic properties, Appl. Catal., A, 284 (2005)193–198.
- G. Colón, J.M. Sánchez-España, J.M. Hidalgo, J.A. Novío, Effect
of TiO2 acidic pre-treatment on the photocatalytic properties
for phenol degradation, J. Photochem. Photobiol., A, 179 (2007)
20–27.
- M. Winter, D. Hamal, X. Yang, H. Kwen, D. Jones, S. Rajagopalan,
K.J. Klabunde, Defining reactivity of solid sorbents: what is the
most appropriate metric?, Chem. Mater., 21 (2009) 2367–2374.
- M. Janus, B. Tryba, M. Inagaki, A.W. Morawski, New preparation
of carbon-TiO2 photocatalysts by carbonization of
n-hexane deposited on TiO2, Appl. Catal., B, 52 (2004) 61–67.
- X. Chen, D.-H. Kuo, D. Lu, N-doped mesoporous TiO2
nanoparticles synthesized by using biological renewable
nanocrystalline cellulose as template for the degradation of
pollutants under visible and sun light, Chem. Eng. J., 295 (2016)
192–200.
- H. Auoub, M. Kassir, M. Raad, H. Bazzi, A. Hijazi, Effect of
dye structure on the photodegradation kinetic using TiO2
nanoparticles, J. Mater. Sci. Chem. Eng., 5 (2017) 31–45.
- T. Bezrodna, T. Gavrilko, G. Puchkovska, V. Shimanovska,
J. Baran, M. Marchewka, Spectroscopic study of TiO2 (rutile)–benzophenone heterogeneous systems, J. Mol. Struct.,
614 (2002) 315–324.
- V. Zelenek, V. Hornebecq, S. Mornet, O. Schaf, P. Llewellyn,
Mesoporous silica modified with titania: structure and thermal
stability, Chem. Mater., 18 (2006) 3184–3191.
- E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface
modification with silane coupling agent on suppressing the
photo-catalytic activity of fine TiO2 particles as inorganic UV
filter, Appl. Surf. Sci., 254 (2007) 563–569.
- M.Y. Wan, W.F. Li, Y.M. Long, Y.F. Tu, Electrochemical
determination of tryptophan based on Si-doped nano-TiO2
modified glassy carbon electrode, Anal. Methods, 4 (2012)
2860–2865.
- Y. Hu, H.-L. Tsai, C.-L. Huang, Effect of brookite phase on the
anatase–rutile transition in titania nanoparticles, J. Eur. Ceram.
Soc., 23 (2003) 691–696.
- R. Klarysri, S. Wichaidit, T. Tubchareon, S. Nokjan, S. Piticharoenphun,
O. Mekasuwandumrong, P. Praserthdam,
Impact of calcination atmospheres on the physiochemical and
photocatalytic properties of nanocrystalline TiO2 and Si-doped
TiO2, Ceram. Int., 41 (2015) 11409–11417.
- D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2
nanoparticles: anatase, brookite and rutile, Nanotechnology,
19 (2008) 145605–145615.
- A.M. Luis, M.C. Neves, M.H. Mendonca, O.C. Monteiro,
Influence of calcination parameters on the TiO2 photocatalytic
properties, Mater. Chem. Phys., 125 (2011) 20–25.
- P. Nyamukamba, L. Tichagwa, C. Greyling, The influence of
carbon doping on TiO2 nanoparticle size, surface area, anatase
to rutile phase transformation and photocatalytic activity,
Mater. Sci. Forum, 712 (2012) 49–63.
- N. Wetchakun, B. Incessungvorn, K. Wetchakun, S. Phanichphant,
Influence of calcination temperature on anatase to
rutile phase transformation in TiO2 nanoparticles synthesized
by the modified sol–gel method, Mater. Lett., 82 (2012) 195–198.
- K.S.W. Sing, Reporting physisorption data for gas/solid systems
with special reference to the determination of surface area and
porosity, Pure Appl. Chem., 54 (1982) 2201–2218.
- J. Zhang, P. Zhou, J. Liuband, J. Yu, New understanding of the
difference of photocatalytic activity among anatase, rutile and
brookite TiO2, Phys. Chem. Chem. Phys., 16 (2014) 20382–20386.
- Y. Su, J.S. Wu, X. Quan, S. Chen, Electrochemically assisted
photocatalytic degradation of phenol using silicon-doped TiO2
nanofilm electrode, Desalination, 252 (2010) 143–148.