References

  1. S.M. Gupta, I.M. Tripath, A review of TiO2 nanoparticles, Chin. Sci. Bull., 56 (2011) 1639–1657.
  2. S.J. Tsai, S. Cheng, Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants, Catal. Today, 33 (1997) 227–237.
  3. J.F. Porter, Y.G. Li, C.K. Chan, Effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2, J. Mater. Sci., 34 (1999) 1523–1531.
  4. P. Górska, A. Zaleska, E. Kowalska, T. Klimczuk, J.W. Sobczak, E. Skwarek, W. Janusz, J. Hupka, TiO2 photoactivity in vis and UV light: the influence of calcination temperature and surface properties, Appl. Catal., B, 84 (2008) 440–447.
  5. Z.B. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 102 (1998) 10871–10878.
  6. D.W. Bahnemann, S.N. Kholiskaya, R. Dillert, A.I. Kulak, A.I. Kokorin, Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles, Appl. Catal., B, 36 (2002) 161–169.
  7. Y.X. Chen, K. Wang, L.P. Lou, Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation, J. Photochem. Photobiol., A, 163 (2004) 281–287.
  8. L. Liu, H. Zhao, J.M. Andino, Y. Li, Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile and brookite polymorphs and exploration of surface chemistry, ACS Catal., 2 (2012) 1817–1828.
  9. J.M. Hermann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53 (1999) 115–129.
  10. D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46 (2011) 855–874.
  11. P. Cheng, M.P. Zheng, Y.P. Jin, Q. Huang, M.Y. Gu, Preparation and characterization of silica-doped titania photocatalyst through sol–gel method, Mater. Lett., 57 (2003) 2989–2994.
  12. N. Bao, Z.T. Wei, Z.H. Ma, F. Liu, G.B. Yin, Si-doped mesoporous TiO2 continuous fibers: preparation by centrifugal spinning and photocatalytic properties, J. Hazard. Mater., 174 (2010) 129–136.
  13. A. Mahyar, M.A Behnajady, N. Modirshahla, Characterization and photocatalytic activity of SiO2–TiO2 mixed oxide nanoparticles prepared by sol–gel method, Ind. J. Chem., 49A (2010) 1593–1600.
  14. C. Su, K.F. Lin, Y.H. Lin, B.H. You, Preparation and characterization of high-surface-area titanium dioxide by sol–gel process, J. Porous Mater., 13 (2006) 251–258.
  15. A. Nilchi, S.J. Darzi, A.R. Mahjoub, S.R. Garmarodi, New TiO2/SiO2 nanocomposites-phase transformations and photocatalytic studies, Colloids Surf., A, 361 (2010) 25–30.
  16. S. Photong, V. Boonamnuayvitaya, Preparation and characterization of amine-functionalized SiO2/TiO2 films for formaldehyde degradation, Appl. Surf. Sci., 255 (2009) 9311–9315.
  17. O. Khantamat, C.H. Li, S.P. Liu, T. Liu, H.J. Lee, O. Zenasni, T.C. Lee, C. Cai, T.R. Lee, Broadening the photoresponsive activity of anatase titanium dioxide particles via decoration with partial gold shells, J. Colloid Interface Sci., 513 (2018) 715–725.
  18. N. Bao, G.L. Wu, J.J. Niu, Q.Z. Zhang, S. He, J. Wang, Wide spectral response and enhanced photocatalytic activity of TiO2 continuous fibers modified with aminosilane coupling agents, J. Alloys Compd., 599 (2014) 40–48.
  19. R. Klaysri, T. Tubchareon, P. Praserthdam, One-step synthesis of amine-functionalized TiO2 surface for photocatalytic decolorization under visible light irradiation, J. Ind. Eng. Chem., 45 (2017) 229–236.
  20. X. Zhang, F. Zhang, K.-Y. Chan, Synthesis of titania–silica mixed oxide mesoporous materials, characterization and photocatalytic properties, Appl. Catal., A, 284 (2005)193–198.
  21. G. Colón, J.M. Sánchez-España, J.M. Hidalgo, J.A. Novío, Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation, J. Photochem. Photobiol., A, 179 (2007) 20–27.
  22. M. Winter, D. Hamal, X. Yang, H. Kwen, D. Jones, S. Rajagopalan, K.J. Klabunde, Defining reactivity of solid sorbents: what is the most appropriate metric?, Chem. Mater., 21 (2009) 2367–2374.
  23. M. Janus, B. Tryba, M. Inagaki, A.W. Morawski, New preparation of carbon-TiO2 photocatalysts by carbonization of n-hexane deposited on TiO2, Appl. Catal., B, 52 (2004) 61–67.
  24. X. Chen, D.-H. Kuo, D. Lu, N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light, Chem. Eng. J., 295 (2016) 192–200.
  25. H. Auoub, M. Kassir, M. Raad, H. Bazzi, A. Hijazi, Effect of dye structure on the photodegradation kinetic using TiO2 nanoparticles, J. Mater. Sci. Chem. Eng., 5 (2017) 31–45.
  26. T. Bezrodna, T. Gavrilko, G. Puchkovska, V. Shimanovska, J. Baran, M. Marchewka, Spectroscopic study of TiO2 (rutile)–benzophenone heterogeneous systems, J. Mol. Struct., 614 (2002) 315–324.
  27. V. Zelenek, V. Hornebecq, S. Mornet, O. Schaf, P. Llewellyn, Mesoporous silica modified with titania: structure and thermal stability, Chem. Mater., 18 (2006) 3184–3191.
  28. E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter, Appl. Surf. Sci., 254 (2007) 563–569.
  29. M.Y. Wan, W.F. Li, Y.M. Long, Y.F. Tu, Electrochemical determination of tryptophan based on Si-doped nano-TiO2 modified glassy carbon electrode, Anal. Methods, 4 (2012) 2860–2865.
  30. Y. Hu, H.-L. Tsai, C.-L. Huang, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles, J. Eur. Ceram. Soc., 23 (2003) 691–696.
  31. R. Klarysri, S. Wichaidit, T. Tubchareon, S. Nokjan, S. Piticharoenphun, O. Mekasuwandumrong, P. Praserthdam, Impact of calcination atmospheres on the physiochemical and photocatalytic properties of nanocrystalline TiO2 and Si-doped TiO2, Ceram. Int., 41 (2015) 11409–11417.
  32. D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology, 19 (2008) 145605–145615.
  33. A.M. Luis, M.C. Neves, M.H. Mendonca, O.C. Monteiro, Influence of calcination parameters on the TiO2 photocatalytic properties, Mater. Chem. Phys., 125 (2011) 20–25.
  34. P. Nyamukamba, L. Tichagwa, C. Greyling, The influence of carbon doping on TiO2 nanoparticle size, surface area, anatase to rutile phase transformation and photocatalytic activity, Mater. Sci. Forum, 712 (2012) 49–63.
  35. N. Wetchakun, B. Incessungvorn, K. Wetchakun, S. Phanichphant, Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method, Mater. Lett., 82 (2012) 195–198.
  36. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 54 (1982) 2201–2218.
  37. J. Zhang, P. Zhou, J. Liuband, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16 (2014) 20382–20386.
  38. Y. Su, J.S. Wu, X. Quan, S. Chen, Electrochemically assisted photocatalytic degradation of phenol using silicon-doped TiO2 nanofilm electrode, Desalination, 252 (2010) 143–148.