References

  1. B. Meier, G.L. Kayser, U. Amjad, J. Bartram, Implementing an evolving human right through water and sanitation policy, Water Policy, 15 (2013) 116–133.
  2. United Nations (UN), Resolution Adopted by the General Assembly 64/292, The Human Right to Water and Sanitation, A/RES/64/292, United Nations, New York, NY, 2010.
  3. R.P. Hall, B. Van Koppenand E. Van Houweling, The human right to water: the importance of domestic and productive water rights, Sci. Eng. Ethics, 20 (2014) 849–868.
  4. C.A. Krakow, The International law and politics of water access: experiences of displacement, statelessness and armed conflict, Water, 12 (2020) 340–352.
  5. D.K. Kreamer, The past, present, and future of water conflict and international security, J. Contemp. Water Res. Educ., 149 (2012) 87–95.
  6. B.S. Levy, V.W. Sidel, Water rights and water fights: preventing and resolving conflicts before they boil over, Am. J. Public Health, 101 (2011) 778–780.
  7. WWF-ANP, Vulnerabilidade de Portugal à Seca e Escassez de Água, Relatorio Outubro, 2019.
  8. M. Li, W. Xu, M.W. Rosegrant, Irrigation, risk aversion and water rights priority under water supply uncertainty, Water Resour. Res., 539 (2017) 7885–7903.
  9. R. Aiello, G.L. Cirelli, S. Consoli, Effects of reclaimed wastewater irrigation on soil and tomato fruits: a case study in Sicily (Italy), Agric. Water Manage., 93 (2007) 65–72.
  10. A.R. Prazeres, F. Carvalho, J. Rivas, M. Patanita, J. Dôres, Reuse of pretreated cheese whey wastewater for industrial tomato production (Lycopersicon esculentum Mill.), Agric. Water Manage., 140 (2014) 87–95.
  11. https://www.worldometers.info/water/ (accessed April 10, 2020).
  12. A.R. Prazeres, J. Rivas, M.A. Almeida, M. Patanita, J. Dôres, F. Carvalho, Agricultural reuse of cheese whey wastewater treated by NaOH precipitation for tomato production under several saline conditions and sludge management, Agric. Water Manage., 167 (2016) 62–74.
  13. https://algarvedailynews.com/news/16602-portugal-is-livingon-water-it-does-not-have (accessed April 10, 2020).
  14. D. Młyński, A. Operacz, A. Wałęga, Sensitivity of methods for calculating environmental flows based on hydrological characteristics of watercourses regarding the hydropower potential of rivers, J. Cleaner Prod., 250 (2020) 1–13.
  15. A. Operacz, Estimating the value of inviolable flow in surface water investments according to Kostrzewa method, Econ. Environ., 1 (2015) 100–109.
  16. A. Operacz, K. Kurek, D. Młyński, P. Bugajski, Untypical draining barriers efficiency as a method of pollutants limiting in the groundwater reservoir, J. Ecol. Eng., 20 (2019) 67–76.
  17. D. Młyński, A. Wałęga, P. Bugajski, A. Operacz, K. Kurek, Verfication of empirical formulas for calculating mean low flow in reflect to affecting on disposable water resources, Acta Sci. Pol. Form. Circum., 18 (2019) 83–92.
  18. A. Operacz, The term “effective hydropower potential” based on sustainable development - an initial case study of the Raba river in Poland, Renewable Sustainable Energy Rev., 75 (2017) 1453–1463.
  19. P. Quinteiro, S. Rafael, B. Vicente, M. Marta-Almeida, A. Rocha, L. Arroja, A.C. Dias. Mapping green water scarcity under climate change: a case study of Portugal, Sci. Total Environ., 696 (2019) 134024–134041.
  20. Portugal: Range of Circumstances and Region Analysis, The Water Strategy Man Project, Newsletter Issue 3, 2004.
  21. L.V. Cunha, L. Ribeiro, R. Oliveira, J. Nascimento, Recursos Hídricos, F.D. Santos, P. Miranda, Eds., Alterações Climáticas em Portugal: Cenários, Impactos e Medidas de Adaptação, Projecto SIAM II, cap.3, Gradiva, Lisboa, 2006, pp. 115–168.
  22. S. Cruz, C. Cordovil, R. Pinto, A. Brito, M. Cameira, G. Goncalves, J. Poulsen, H. Thodsen, B. Kronvang, L. May, Nitrogen in water-Portugal and Denmark: two contrasting realities, Water, 11 (2019) 1114–1132.
  23. M.A. Sutton, O. Oenema, J.W. Erisman, A. Leip, H. van Grinsven, W. Winiwarter, Too much of a good thing, Nature, 472 (2011) 159–161.
  24. E. Pagans, R. Barrena, X. Font, A. Sánchez, Ammonia emissions from the composting of different organic wastes. Dependency on process temperature, Chemosphere, 62 (2006) 1534–1542.
  25. P. Burgos, E. Madejón, F. Cabrera, Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes, Waste Manage. Res., 24 (2006) 175–182.
  26. A. Barreira, La Gestión de las Cuencas Hispano-Portuguesas: El Convenio de Albufeira, Fundación Nueva Cultura del Agua, Sevilha, 2007.
  27. INAG, Portuguese National Water Plan (Plano Nacional da Água – Introdução, Caracterização e Diagnóstico da Situação Actual dos Recursos Hídricos), Instituto da Água, Vol. 1 and 2, 2001.
  28. EASAC, Groundwater in the Southern Member States of the European Union: An Assessment of Current Knowledge and Future Prospects, Country Report for Portugal, European Academies Science Advisory Council, 2010.
  29. F.S. Costa, Water Policy(ies) in Portugal, Méditerranée, 2018.
  30. O.R. Burt, Groundwater Management and Surface Water Development for Irrigation, R.M. Thrall et al., Eds., Economic Modeling for Water Policy Evaluation, North-Holland, New York, NY, 1976, pp. 75–95.
  31. A. Chambel, J. Duque, J. Nascimento, Regional Study of Hard Rock Aquifers in Alentejo, South Portugal: Methodology and Results, J. Krásný, J.M. Sharp, Eds., IAH-SP Series, Taylor & Francis, 2007, pp. 73–93.
  32. IPCC, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, Eds., The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, New York, NY, 2013.
  33. C. Yang, H. Fraga, W. Van Ieperen, J.A. Santos, Assessment of irrigated maize yield response to climate change scenarios in Portugal, Agric. Water Manage., 184 (2017) 178–190.
  34. P. Valverde, R. Serralheiro, M. Carvalho, M. Maia, B. Oliveira, V. Ramos, Climate change impacts on irrigated agriculture in the Guadiana river basin (Portugal), Agric. Water Manage., 152 (2015) 17–30.
  35. B. Redhaounia, H. Aktarakci, B.O. IIondo, H. Gabtni, S. Khomsi, M. Bédir, Hydro-geophysical interpretation of fractured and sorrelified limestones reservoirs: a case study from Amdoun region (NW Tunisia) using electrical resistivity tomography, digital elevation model (DEM) and hydro-geochemical approaches, J. Afr. Earth Sci., 112 (2015) 328–338.
  36. M. Belgiorno, P. Marianelli, G. Pasquini, A.Sbrana, A contribution to the study of a Pisa alluvial plain sector for low temperature geothermal assessment, Atti. Soc. Toscana Sci. Nat. A, 123 (2016) 17–23.
  37. K. Kurek, A. Operacz, P. Bugajski, D. Młyński, A. Wałęga, J. Pawełek, Prediction of the stability of chemical composition of therapeutic groundwater, Water, 12 (2020) 103–128.
  38. J. Małecki, M. Nawalny, S. Witczak, T. Gruszczyński, Wyznaczanie Parametrów Migracji Zanieczyszczeń W Ośrodku Porowatym dla Potrzeb Badań Hydrogeologicznych i Ochrony Środowiska, Wyd. Wydz. Geol. UW, Warszawa, 2006.
  39. A.S. Kleczkowski, The Map of the Critical Protection Areas (CPA) of the Major Groundwater Basins (MGWB) in Poland, 1:500,000 (Explanations), Institute Hydrogeology and Engineering Geology AGH Krakow, 1991.
  40. A.S. Kleczkowski, S. Witczak, Critical Protection Areas (CPA) of the Major Groundwater Basins (MGWB) in Poland (Map 1:500000), Proceedings of the International Symposium on Methodological Suggestions for Drawing Up Natural, Environmental, Potential Maps, ENVIGEO, Brno, 1990.
  41. P. Wachniew, A.J. Żurek, C. Stumpp, A. Gemitzi, A. Gargini, M. Filippini, K. Rozanski, J. Meeks, J. Kværner, S. Witczak, Toward operational methods for the assessment of intrinsic groundwater vulnerability: a review. Crit. Rev. Environ. Sci. Technol., 46 (2016) 827–884.
  42. R.S. Ayers, D.W. Westcot, Water Quality for Agriculture, FAO Irrigation and Drainage Paper 29 Rev. 1. FAO, Rome, 1985.
  43. R.K. Gupta, Groundwater Quality for Irrigation, D.N. Rao, N.T. Singh, R.K. Gupta, N.K. Tyagi, Eds., Salinity, Management for Sustainable Agriculture, Central Salinity Research Institute, Karnal, India, 1994.
  44. T.Y. Stigter, A.M.M. Carvallho Dill, L. Ribeiro, E. Reis, Impact of the shift from groundwater to surface water irrigation on aquifer dynamics and hydrochemistry in a semi-arid region in the south of Portugal, Agric. Water Manage., 85 (2006) 121–132.
  45. S.P. Renganayaki, L. Elango, Impact of recharge from a check dam on groundwater quality and assessment of suitability for drinking and irrigation purposes, Arabian J. Geosci., 7 (2014) 3119–3129.
  46. The Drinking Water Directive, Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption.
  47. Decree-Law No. 306/2007, from August 27, on the Quality of Water for Human Consumption.
  48. Entidade Reguladora dos Serviços de Águas e Resíduos (ERSAR). Available at: www.ersar.pt (accessed July 17, 2020).
  49. A. Chambel, J. Duque, A. Fialho, Groundwater in a semiarid area of South Portugal, J.V. Brahana, Ed., Gambling with Groundwater – Physical Chemical and Biological Aspects of Aquifer-Stream Relations, Las Vegas, 1998, pp. 75–80.
  50. C.M. Magalhães, S.B. Joye, R.M. Moreira, W.J. Wiebe, A.A. Bordalo, Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal, Water Res., 39 (2005) 1783–1794.
  51. A. Almeida, C. Ribeiro, F. Carvalho, A. Durao, P. Bugajski, K. Kurek, P Pochwatka, K. Jóźwiakowski, Phytoremediation potential of Vetiveria zizanioides and Oryza sativa to nitrate and organic substance removal in vertical flow constructed wetland systems, Ecol. Eng., 138 (2019) 19–27.
  52. K. Jóźwiakowski, P. Bugajski, K. Kurek, R. Caceres, T. Siwiec, A. Jucherski, W. Czekała, K. Kozłowski, Technological reliability of pollutant removal in different seasons in one-stage constructed wetland system with horizontal flow operating in the moderate climate, Sep. Purif. Technol., 238 (2020) 1–11.
  53. J.F. Santos, M.M. Portela, I. Pulido-Calvo, Spring drought prediction based on winter NAO and global SST in Portugal, Hydrol. Processes, 28 (2014) 1009–1024.
  54. J.F. Santos, M.M. Portela, I. Pulido-Calvo, Spring drought forecasting in mainland Portugal based on large-scale climatic indices, Ing. Aqua, 19 (2015) 211–227.
  55. J.F. Santos, M.M. Portela, I. Pulido-Calvo, Regional frequency analysis of droughts in Portugal, Water Res. Manage., 25 (2011) 3537–3552.
  56. B. Ahmadi, A. Ahmadalipour, H. Moradkhani, Hydrological drought persistence and recovery over the CONUS: a multistage framework considering water quantity and quality, Water Res., 150 (2019) 97–110.
  57. C.-J. Chang, C.-P. Huang, C.-Y. Chen, G.-S. Wang, Assessing the potential effect of extreme weather on water quality and disinfection by-product formation using laboratory simulation, Water Res., 170 (2020) 115–296.