References
- M. Mohadesi, A. Shokri, Evaluation of Fenton and photo-Fenton
processes for the removal of p-chloronitrobenzene in aqueous
environment using Box–Behnken design method, Desal. Water
Treat., 81 (2017) 199–208.
- A. Shokri, The treatment of spent caustic in the wastewater
of olefin units by ozonation followed by electrocoagulation
process, Desal. Water Treat., 111 (2018) 173–182.
- A. Shokri, Employing electrocoagulation for the removal of
Acid Red 182 in aqueous environment by using Box–Behenken
design method, Desal. Water Treat., 115 (2018) 281–287.
- S.H. Park, L.P. Padhye, P. Wang, M. Cho, J.-H. Kim,
C.-H. Huang, N-nitrosodimethylamine (NDMA) formation
potential of amine-based water treatment polymers: effects
of in situ chloramination, breakpoint chlorination, and preoxidation,
J. Hazard. Mater., 282 (2015) 133–140.
- Z. Ye, J. Zhao, H. Huang, F. Ma, R. Zhang, Decomposition of
dimethylamine gas with dielectric barrier discharge, J. Hazard.
Mater., 260 (2013) 32–39.
- H.F. Zhang, S.Y. Ren, J.W. Yu, M. Yang, Occurrence of selected
aliphatic amines in source water of major cities in China,
J. Environ. Sci., 24 (2012) 1885–1890.
- S. Helali, E. Puzenat, N. Perol, M.-J. Safi, C. Guillard,
Methylamine and dimethylamine photocatalytic degradation—
adsorption isotherms and kinetics, Appl. Catal., A, 402 (2011)
201–207.
- X. Liao, C. Chen, J. Zhang, Y. Dai, X. Zhang, S. Xie, Dimethylamine
biodegradation by activated sludge enriched from drinking
water biofilter, Chemosphere, 119 (2015) 935–940.
- M.H. van Agteren, Keuning S, Oosterhaven J, Handbook on
Biodegradation and Biological Treatment of Hazardous Organic
Compound, 1st ed., Springer, Netherlands, 1998.
- L. Wang, Y. Li, Degradation of dimethylamine and three tertiary
amines by activated sludge and isolated strains, J. Chem.
Technol. Biotechnol., 90 (2015) 847–858.
- H. Yuanzhen, C. Hefa, Degradation of N-nitrosodimethylamine
(NDMA) and its precursor dimethylamine (DMA) in mineral
micropores induced by microwave irradiation, Water Res.,
94 (2016) 305–314.
- I. Raj, A.N. Vaidya, R.A. Pandey, A. Bansiwal, S. Deshmukh,
H.J. Purohit, Recent advancements in the mitigation of obnoxious
nitrogenous gases, J. Environ. Manage., 205 (2018) 319–336.
- I. Wysocka, J. Gębicki, J. Namieśnik, Technologies for
deodorization of malodorous gases, Environ. Sci. Pollut. Res.,
26 (2019) 9409–9434.
- K. Gao, Q. Wang, X. Du, Q. Wei, Y. Huang, Efficient adsorption
and eco-environmental oxidization of dimethylamine in Beta
zeolite, Microporous Mesoporous Mater., 282 (2019) 219–227.
- A.S. Liffourrena, M.A. Salvano, G.I. Lucchesi, Pseudomonas
putida A ATCC 12633 oxidizes trimethylamine aerobically via
two different pathways, Arch. Microbiol., 192 (2010) 471–476.
- C.P.A. Mulcahy, A.J. Carman, S.M. Casey, The adsorption and
thermal decomposition of dimethylamine on Si(100), Surf. Sci.,
459 (2000) 1–13.
- Q. Hu, Y. Meng, T. Sun, Q. Mahmood, D. Wu, J. Zhu, G. Lu,
Kinetics and equilibrium adsorption studies of dimethylamine
(DMA) onto ion-exchange resin, J. Hazard. Mater., 185 (2011)
677–681.
- A. Shokri, A.H. Joshagani, Using microwave along with TiO2 for
degradation of 4-chloro-2-nitrophenol in aqueous environment,
Russ. J. Appl. Chem., 89 (2016) 1985–1990.
- A. Shokri, Degradation of 4-nitrophenol from industerial
wastewater by nano catalytic ozonation, Int. J. Nano Dimens.,
7 (2016) 160–167.
- A. Shokri, A kinetic study and application of electro-Fenton
process for the remediation of aqueous environment containing
toluene in a batch reactor, Russ. J. Appl. Chem., 90 (2017)
452–457.
- A. Shokri, S. Karimi, Treatment of aqueous solution containing
acid red 14 using an electro peroxone process and a Box–
Behnken experimental design, Arch. Hyg. Sci., 9 (2020) 48–57.
- J.B.M. Meiberg, W. Harder, Aerobic and anaerobic metabolism
of trimethylamine, dimethylamine and methylamine in
Hyphomicrobium X, Microbiology, 106 (1978) 265–276.
- M. Mohadesi, A. Shokri, Treatment of oil refinery wastewater
by photo-Fenton process using Box–Behnken design method:
kinetic study and energy consumption, Int. J. Environ. Sci.
Technol., 16 (11) 7349–7356.
- A. Shokri, Application of Sono–photo-Fenton process for
degradation of phenol derivatives in petrochemical wastewater
using full factorial design of experiment, Int. J. Ind. Chem.,
9 (2018) 295–303.
- A. Shokri, A. Bayat, K. Mahanpoor, Employing Fenton-like
process for the remediation of petrochemical wastewater
through Box–Behnken design method, Desal. Water Treat.,
166 (2019) 135–143.
- C.-F. Yang, C.-C. Wang, C.-H. Tseng, Methylamine removal
using mixed bacterial strains in a continuous stirred tank
reactor (CSTR) system, Int. Biodeterior. Biodegrad., 85 (2013)
583–586.
- E.W. Rice, APHA, Standard Methods for the Examination of
Water and Wastewater, American Public Health Association,
Washington, DC, 2012.
- G.R. Umbreit, Spectrophotometric determination of secondary
amines, Anal. Chem., 33 (1961) 1572–1573.
- J.K. Fawcett, J.E. Scott, A rapid and precise method for the
determination of urea, J. Clin. Pathol., 13 (1960) 156–159.
- A. Habibi, F. Vahabzadeh, Degradation of formaldehyde at
high concentrations by phenol-adapted Ralstonia eutropha
closely related to pink-pigmented facultative methylotrophs,
J. Environ. Sci. Health., Part A, 48 (2013) 279–292.
- S.A. Rahmaninezhad, H. Fathi, A.R. Pendashteh,
N. Chaibakhsh, B. Tavakoli, Investigation of the impact of
immobilized cells and the nitrification process using a coupled
moving bed biofilm reactor and activated sludge bioreactor
for biodegradation of high concentrations of dimethyl
formamide, Process Saf. Environ., 102 (2016) 523–533.
- J.R. Baker, M.W. Milke, J.R. Mihelcic, Relationship between
chemical and theoretical oxygen demand for specific classes of
organic chemicals, Water Res., 33 (1999) 327–334.
- D.M. Whitacre, Reviews of Environmental Contamination and
Toxicology, Springer-Verlag, New York, NY, 2012.
- Y. Peng, G. Zhu, Biological nitrogen removal with nitrification
and denitrification via nitrite pathway, Appl. Microbiol.
Biotechnol., 73 (2006) 15–26.
- W. Verstraete, S. Philips, Nitrification–denitrification processes
and technologies in new contexts, Environ. Pollut., 102 (1998)
717–726.
- W. Verstraete, S. Philips, Nitrification–Denitrification Processes
and Technologies in New Contexts, J. Erisman, S. Smeulders,
K. Vander Hoek, J. Wisniewski, J. Wisniewski, Eds., Nitrogen,
the Confer-Ns, Elsevier, 1998, pp. 717–726.
- B. Bonakdarpour, I. Vyrides, D.C. Stuckey, Comparison of the
performance of one stage and two stage sequential anaerobic–aerobic biological processes for the treatment of reactive azo dye-containing synthetic wastewaters, Int. Biodeterior.
Biodegrad., 65 (2011) 591–599.
- Y. Ma, Y.-z. Peng, X.-l. Wang, S.-y. Wang, Nutrient removal
performance of an anaerobic–anoxic–aerobic process as a
function of influent C/P ratio, J. Chem. Technol. Biotechnol.,
80 (2005) 1118–1124.
- L. Wang, Y. Li, X. Shang, J. Shen, Occurrence and removal of
N-nitrosodimethylamine and its precursors in wastewater
treatment plants in and around Shanghai, Front. Environ. Sci.
Eng., 8 (2014) 519–530.
- D. Obaja, S. Macé, J. Costa, C. Sans, J. Mata-Alvarez, Nitrification,
denitrification and biological phosphorus removal in piggery
wastewater using a sequencing batch reactor, Bioresour.
Technol., 87 (2003) 103–111.
- K. Rabaey, W. Verstraete, Microbial fuel cells: novel
biotechnology for energy generation, Trends Biotechnol.,
23 (2005) 291–298.