References

  1. M. Mohadesi, A. Shokri, Evaluation of Fenton and photo-Fenton processes for the removal of p-chloronitrobenzene in aqueous environment using Box–Behnken design method, Desal. Water Treat., 81 (2017) 199–208.
  2. A. Shokri, The treatment of spent caustic in the wastewater of olefin units by ozonation followed by electrocoagulation process, Desal. Water Treat., 111 (2018) 173–182.
  3. A. Shokri, Employing electrocoagulation for the removal of Acid Red 182 in aqueous environment by using Box–Behenken design method, Desal. Water Treat., 115 (2018) 281–287.
  4. S.H. Park, L.P. Padhye, P. Wang, M. Cho, J.-H. Kim, C.-H. Huang, N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: effects of in situ chloramination, breakpoint chlorination, and preoxidation, J. Hazard. Mater., 282 (2015) 133–140.
  5. Z. Ye, J. Zhao, H. Huang, F. Ma, R. Zhang, Decomposition of dimethylamine gas with dielectric barrier discharge, J. Hazard. Mater., 260 (2013) 32–39.
  6. H.F. Zhang, S.Y. Ren, J.W. Yu, M. Yang, Occurrence of selected aliphatic amines in source water of major cities in China, J. Environ. Sci., 24 (2012) 1885–1890.
  7. S. Helali, E. Puzenat, N. Perol, M.-J. Safi, C. Guillard, Methylamine and dimethylamine photocatalytic degradation— adsorption isotherms and kinetics, Appl. Catal., A, 402 (2011) 201–207.
  8. X. Liao, C. Chen, J. Zhang, Y. Dai, X. Zhang, S. Xie, Dimethylamine biodegradation by activated sludge enriched from drinking water biofilter, Chemosphere, 119 (2015) 935–940.
  9. M.H. van Agteren, Keuning S, Oosterhaven J, Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compound, 1st ed., Springer, Netherlands, 1998.
  10. L. Wang, Y. Li, Degradation of dimethylamine and three tertiary amines by activated sludge and isolated strains, J. Chem. Technol. Biotechnol., 90 (2015) 847–858.
  11. H. Yuanzhen, C. Hefa, Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation, Water Res., 94 (2016) 305–314.
  12. I. Raj, A.N. Vaidya, R.A. Pandey, A. Bansiwal, S. Deshmukh, H.J. Purohit, Recent advancements in the mitigation of obnoxious nitrogenous gases, J. Environ. Manage., 205 (2018) 319–336.
  13. I. Wysocka, J. Gębicki, J. Namieśnik, Technologies for deodorization of malodorous gases, Environ. Sci. Pollut. Res., 26 (2019) 9409–9434.
  14. K. Gao, Q. Wang, X. Du, Q. Wei, Y. Huang, Efficient adsorption and eco-environmental oxidization of dimethylamine in Beta zeolite, Microporous Mesoporous Mater., 282 (2019) 219–227.
  15. A.S. Liffourrena, M.A. Salvano, G.I. Lucchesi, Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways, Arch. Microbiol., 192 (2010) 471–476.
  16. C.P.A. Mulcahy, A.J. Carman, S.M. Casey, The adsorption and thermal decomposition of dimethylamine on Si(100), Surf. Sci., 459 (2000) 1–13.
  17. Q. Hu, Y. Meng, T. Sun, Q. Mahmood, D. Wu, J. Zhu, G. Lu, Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin, J. Hazard. Mater., 185 (2011) 677–681.
  18. A. Shokri, A.H. Joshagani, Using microwave along with TiO2 for degradation of 4-chloro-2-nitrophenol in aqueous environment, Russ. J. Appl. Chem., 89 (2016) 1985–1990.
  19. A. Shokri, Degradation of 4-nitrophenol from industerial wastewater by nano catalytic ozonation, Int. J. Nano Dimens., 7 (2016) 160–167.
  20. A. Shokri, A kinetic study and application of electro-Fenton process for the remediation of aqueous environment containing toluene in a batch reactor, Russ. J. Appl. Chem., 90 (2017) 452–457.
  21. A. Shokri, S. Karimi, Treatment of aqueous solution containing acid red 14 using an electro peroxone process and a Box– Behnken experimental design, Arch. Hyg. Sci., 9 (2020) 48–57.
  22. J.B.M. Meiberg, W. Harder, Aerobic and anaerobic metabolism of trimethylamine, dimethylamine and methylamine in Hyphomicrobium X, Microbiology, 106 (1978) 265–276.
  23. M. Mohadesi, A. Shokri, Treatment of oil refinery wastewater by photo-Fenton process using Box–Behnken design method: kinetic study and energy consumption, Int. J. Environ. Sci. Technol., 16 (11) 7349–7356.
  24. A. Shokri, Application of Sono–photo-Fenton process for degradation of phenol derivatives in petrochemical wastewater using full factorial design of experiment, Int. J. Ind. Chem., 9 (2018) 295–303.
  25. A. Shokri, A. Bayat, K. Mahanpoor, Employing Fenton-like process for the remediation of petrochemical wastewater through Box–Behnken design method, Desal. Water Treat., 166 (2019) 135–143.
  26. C.-F. Yang, C.-C. Wang, C.-H. Tseng, Methylamine removal using mixed bacterial strains in a continuous stirred tank reactor (CSTR) system, Int. Biodeterior. Biodegrad., 85 (2013) 583–586.
  27. E.W. Rice, APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2012.
  28. G.R. Umbreit, Spectrophotometric determination of secondary amines, Anal. Chem., 33 (1961) 1572–1573.
  29. J.K. Fawcett, J.E. Scott, A rapid and precise method for the determination of urea, J. Clin. Pathol., 13 (1960) 156–159.
  30. A. Habibi, F. Vahabzadeh, Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs, J. Environ. Sci. Health., Part A, 48 (2013) 279–292.
  31. S.A. Rahmaninezhad, H. Fathi, A.R. Pendashteh, N. Chaibakhsh, B. Tavakoli, Investigation of the impact of immobilized cells and the nitrification process using a coupled moving bed biofilm reactor and activated sludge bioreactor for biodegradation of high concentrations of dimethyl formamide, Process Saf. Environ., 102 (2016) 523–533.
  32. J.R. Baker, M.W. Milke, J.R. Mihelcic, Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals, Water Res., 33 (1999) 327–334.
  33. D.M. Whitacre, Reviews of Environmental Contamination and Toxicology, Springer-Verlag, New York, NY, 2012.
  34. Y. Peng, G. Zhu, Biological nitrogen removal with nitrification and denitrification via nitrite pathway, Appl. Microbiol. Biotechnol., 73 (2006) 15–26.
  35. W. Verstraete, S. Philips, Nitrification–denitrification processes and technologies in new contexts, Environ. Pollut., 102 (1998) 717–726.
  36. W. Verstraete, S. Philips, Nitrification–Denitrification Processes and Technologies in New Contexts, J. Erisman, S. Smeulders, K. Vander Hoek, J. Wisniewski, J. Wisniewski, Eds., Nitrogen, the Confer-Ns, Elsevier, 1998, pp. 717–726.
  37. B. Bonakdarpour, I. Vyrides, D.C. Stuckey, Comparison of the performance of one stage and two stage sequential anaerobic–aerobic biological processes for the treatment of reactive azo dye-containing synthetic wastewaters, Int. Biodeterior. Biodegrad., 65 (2011) 591–599.
  38. Y. Ma, Y.-z. Peng, X.-l. Wang, S.-y. Wang, Nutrient removal performance of an anaerobic–anoxic–aerobic process as a function of influent C/P ratio, J. Chem. Technol. Biotechnol., 80 (2005) 1118–1124.
  39. L. Wang, Y. Li, X. Shang, J. Shen, Occurrence and removal of N-nitrosodimethylamine and its precursors in wastewater treatment plants in and around Shanghai, Front. Environ. Sci. Eng., 8 (2014) 519–530.
  40. D. Obaja, S. Macé, J. Costa, C. Sans, J. Mata-Alvarez, Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor, Bioresour. Technol., 87 (2003) 103–111.
  41. K. Rabaey, W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnol., 23 (2005) 291–298.