References

  1. C.E. Cerniglia, C.C. Somerville, Reductive Metabolism of Nitroaromatic and Nitropolycyclic Aromatic Hydrocarbons, Springer US, 1995. Available at: http://link.springer.com/10.1007/978-1-4757-9447-2_7.
  2. W. Sirisaksoontorn, S. Thachepan, A. Songsasen, Photodegradation of phenanthrene by N-doped TiO2 photocatalyst, Environ. Lett., 44 (2009) 841–846.
  3. C. Croera, D. Ferrario, L. Gribaldo, In vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1,4-naphthoquinone on human CFU-GM from female and male cord blood donors, Toxicol. in Vitro, 22 (2008) 1555–1561.
  4. S. Zang, B. Lian, Synergistic degradation of 2-naphthol by Fusarium proliferatum and Bacillus subtilis in wastewater, J. Hazard. Mater., 166 (2009) 33–38.
  5. J. Huang, B. Yuan, X. Wu, S. Deng, A comparative adsorption study of β-naphthol on four polymeric adsorbents from aqueous solutions, J. Colloid Interface Sci., 380 (2012) 166–172.
  6. S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, Y. Ait- Ichou, Photodegradation of 2-naphthol in water by artificial light illumination using TiO2 photocatalyst: identification of intermediates and the reaction pathway, Appl. Catal., A, 334 (2008) 386–393.
  7. K.H. Wang, Y.H. Hsieh, L.J. Chen, The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols, J. Hazard. Mater., 59 (1998) 251–260.
  8. D. Bahnemann, Photocatalytic water treatment: solar energy applications, Sol. Energy, 77 (2004) 445–459.
  9. Y. Hu, C. Yuan, Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols, J. Cryst. Growth, 274 (2005) 563–568.
  10. G. Sivalingam, G. Madras, Photocatalytic degradation of poly(bisphenol-A-carbonate) in solution over combustionsynthesized TiO2: mechanism and kinetics, Appl. Catal., A, 269 (2004) 81–90.
  11. H. Tang, Y. Fu, S. Chang, S. Xie, G. Tang, Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants, Chin. J. Catal., 38 (2016) 337–347.
  12. G.F. Huang, Z.L. Ma, W.Q. Huang, Y. Tian, C. Jiao, Z.M. Yang, Z. Wan, A. Pan, Ag3PO4 semiconductor photocatalyst: possibilities and challenges, J. Nanomater., 2013 (2013) 1–8, doi: 10.1155/ 2013/371356.
  13. Z. Frontistis, M. Antonopoulou, A. Petala, D. Venieri, I. Konstantinou, D.I. Kondarides, D. Mantzavinos, Photodegradation of ethyl paraben using simulated solar radiation and Ag3PO4 photocatalyst, J. Hazard. Mater., 323 (2017) 478–488.
  14. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, Q. Xu, Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem., 22 (2012) 4050–4055.
  15. J. Wang, F. Teng, M. Chen, J. Xu, Y. Song, X. Zhou, Facile synthesis of novel Ag3PO4 tetrapods and the {110} facetsdominated photocatalytic activity, CrystEngComm, 15 (2012) 39–42.
  16. A. Wu, C. Tian, C. Wei, H. Yu, Q. Zhang, Q. Yang, H. Fu, Morphology-controlled synthesis of Ag3PO4 nano/microcrystals and their antibacterial properties, Mater. Res. Bull., 48 (2013) 3043–3048.
  17. J. Wan, E. Liu, J. Fan, X. Hu, L. Sun, C. Tang, Y. Yin, H. Li, Y. Hu, In-situ synthesis of plasmonic Ag/Ag3PO4 tetrahedron with exposed {111} facets for high visible-light photocatalytic activity and stability, Ceram. Int., 41 (2015) 6933–6940.
  18. H. Yu, G. Cao, F. Chen, X. Wang, J. Yu, M. Lei, Enhanced photocatalytic performance of Ag3PO4 by simutaneous loading of Ag nanoparticles and Fe(III) cocatalyst, Appl. Catal., B, 160–161 (2014) 658–665.
  19. F.M. Zhao, L. Pan, S. Wang, Q. Deng, J.J. Zou, L. Wang, X. Zhang, Ag3PO4/TiO2 composite for efficient photodegradation of organic pollutants under visible light, Appl. Surf. Sci., 317 (2014) 833–838.
  20. D. Wang, L. Li, Q. Luo, J. An, X. Li, R. Yin, M. Zhao, Enhanced visible-light photocatalytic performances of Ag3PO4 surfacemodified with small amounts of TiO2 and Ag, Appl. Surf. Sci., 321 (2014) 439–446.
  21. Z. Xiu, H. Bo, Y. Wu, X. Hao, Graphite-like C3N4 modified Ag3PO4 nanoparticles with highly enhanced photocatalytic activities under visible light irradiation, Appl. Surf. Sci., 289 (2014) 394–399.
  22. C. Li, Q. Long, C. Yin, Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2 fibers for photocatalytic degradation of black liquor, Appl. Surf. Sci., 319 (2014) 60–67.
  23. Z. Song, X. Dong, N. Wang, L. Zhu, Z. Luo, J. Fang, C. Xiong, Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism, Chem. Eng. J., 317 (2017) 925–934.
  24. X. Gao, W. Peng, G. Tang, Q. Guo, Y. Luo, Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine, J. Alloys Compd., 757 (2018) 455–465.
  25. W.W. Liu, R.F. Peng, Recent advances of bismuth oxychloride photocatalytic material: property, preparation and performance enhancement, J. Electron. Sci. Technol., (2020) 119–137, doi: 10.1016/ j.jnlest.2020.100020.
  26. W. Liu, Z. Dai, L. Yi, A. Zhu, D. Zhong, J. Wang, J. Pan, Intimate contacted two-dimensional/zero-dimensional composite of bismuth titanate nanosheets supported ultrafine bismuth oxychloride nanoparticles for enhanced antibiotic residue degradation, J. Colloid Interface Sci., 529 (2018) 23–33.
  27. J. Xie, Y. Yang, H. He, D. Cheng, M. Mao, Q. Jiang, L. Song, J. Xiong, Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties, Appl. Surf. Sci., 355 (2015) 921–929.
  28. K. Zhu, N.R. Neale, A.F. Halverson, Y.K. Jin, A.J. Frank, Effects of annealing temperature on the charge-collection and lightharvesting properties of TiO2 nanotube-based dye-sensitized solar cells, J. Phys. Chem. C, 114 (2010) 13433–13441.
  29. J. Lin, M. Guo, C.T. Yip, W. Lu, G. Zhang, X. Liu, L. Zhou, X. Chen, H. Huang, High temperature crystallization of freestanding anatase TiO2 nanotube membranes for high efficiency dye-sensitized solar cells, Adv. Funct. Mater., 23 (2013) 5952–5960.
  30. J. Yu, H. Yu, B. Cheng, X. Zhao, J.C.Y. And, W.K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition, J. Phys. Chem. B, 107 (2003) 13871–13879.
  31. C.Q. Xu, K. Li, W.D. Zhang, Enhancing visible light photocatalytic activity of nitrogen-deficient g-C3N4 via thermal polymerization of acetic acid-treated melamine, J. Colloid Interface Sci., 495 (2017) 27–36.
  32. X. Xing, M. Zhang, L. Hou, L. Xiao, Q. Li, J. Yang, Z-scheme BCN-TiO2 nanocomposites with oxygen vacancy for high efficiency visible light driven hydrogen production, Int. J. Hydrogen Energy, 42 (2017) 28434–28444.
  33. X. Guo, N. Chen, C. Feng, Y. Yang, B. Zhang, G. Wang, Z. Zhang, Performance of magnetically recoverable core–shell Fe3O4@ Ag3PO4/AgCl for photocatalytic removal of methylene blue under simulated solar light, Catal. Commun., 38 (2013) 26–30.
  34. L. Ghalamchi, S. Aber, V. Vatanpour, M. Kian, A novel antibacterial mixed matrixed PES membrane fabricated from embedding aminated Ag3PO4/g-C3N4 nanocomposite for use in the membrane bioreactor, J. Ind. Eng. Chem., 70 (2019) 412–426.
  35. L. Wang, J. Liu, Y. Wang, X. Zhang, D. Duan, C. Fan, Y. Wang, Insight into the enhanced photocatalytic performance of Ag3PO4 modified metastable hexagonal WO3, Colloids Surf., A, 541 (2018) 145–153.
  36. C. Dong, K.L. Wu, M.R. Li, L. Liu, X.W. Wei, Synthesis of Ag3PO4–ZnO nanorod composites with high visible-light photocatalytic activity, Catal. Commun., 46 (2014) 32–35.
  37. J.W. Park, S.G. Baek, Thermal behavior of direct-printed lines of silver nanoparticles, Scr. Mater., 55 (2006) 1139–1142.
  38. T. Yan, W. Guan, J. Tian, P. Wang, W. Li, J. You, B. Huang, Improving the photocatalytic performance of silver phosphate by thermal annealing: influence of acetate species, J. Alloys Compd., 680 (2016) 436–445.
  39. H. Wang, Y. Bai, J. Yang, X. Lang, J. Li, L. Guo, A facile way to rejuvenate Ag3PO4 as a recyclable highly efficient photocatalyst, Chem. Eur. J., 18 (2012) 5524–5529.
  40. J.C.C. Fan, J.B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films, J. Appl. Phys., 48 (1977) 3524–3531.
  41. X.Z.L. And, F.B. Li, Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol., 35 (2001) 2381–2387.
  42. L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Review of photoluminescence performance of nanosized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells, 90 (2006) 1773–1787.
  43. Y. Wang, W. Kang, X. Wang, Preparation of Ag3PO4/Ni3(PO4)2 hetero-composites by cation exchange reaction and its enhancing photocatalytic performance, J. Colloid Interface Sci., 466 (2015) 178–185.
  44. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
  45. K. Vinodgopal, P.V. Kamat, Photochemistry on surfaces: photodegradation of 1,3-diphenylisobenzofuran over metal oxide particles, J. Phys. Chem., 96 (1992) 5053–5059.
  46. H. Xu, W.J. Cooper, J. Jung, W. Song, Photosensitized degradation of amoxicillin in natural organic matter isolate solutions, Water Res., 45 (2011) 632–638.
  47. V. Repousi, A. Petala, Z. Frontistis, M. Antonopoulou, I. Konstantinou, D.I. Kondarides, D. Mantzavinos, Photocatalytic degradation of bisphenol A over Rh/TiO2 suspensions in different water matrices, Catal. Today, 284 (2016) 59–66.
  48. G. Jayamani, M. Shanthi, An efficient nanocomposite CdSZnWO4 for the degradation of Naphthol Green B dye under UV-A light illumination, Nanostruct. Nanoobjects, 22 (2020) 1–14, doi: 10.1016/j.nanoso.2020.100452.
  49. C. Zhou, Y. Zhao, J. Cao, H. Lin, S. Chen, Partial oxidation controlled activity regeneration of used Ag3PO4 photocatalyst via removing the in situ surface metallic silver, Appl. Surf. Sci., 351 (2015) 33–39.
  50. Y. Wang, J. Liu, Y. Wang, C. Fan, G. Ding, Regeneration of novel visible-light-driven Ag/Ag3PO4@C3N4 hybrid materials and their high photocatalytic stability, Mater. Sci. Semicond. Process., 25 (2014) 330–336.