References
- C.E. Cerniglia, C.C. Somerville, Reductive Metabolism of
Nitroaromatic and Nitropolycyclic Aromatic Hydrocarbons,
Springer US, 1995. Available at: http://link.springer.com/10.1007/978-1-4757-9447-2_7.
- W. Sirisaksoontorn, S. Thachepan, A. Songsasen, Photodegradation
of phenanthrene by N-doped TiO2 photocatalyst,
Environ. Lett., 44 (2009) 841–846.
- C. Croera, D. Ferrario, L. Gribaldo, In vitro toxicity of
naphthalene, 1-naphthol, 2-naphthol and 1,4-naphthoquinone
on human CFU-GM from female and male cord blood donors,
Toxicol. in Vitro, 22 (2008) 1555–1561.
- S. Zang, B. Lian, Synergistic degradation of 2-naphthol by
Fusarium proliferatum and Bacillus subtilis in wastewater,
J. Hazard. Mater., 166 (2009) 33–38.
- J. Huang, B. Yuan, X. Wu, S. Deng, A comparative adsorption
study of β-naphthol on four polymeric adsorbents from
aqueous solutions, J. Colloid Interface Sci., 380 (2012)
166–172.
- S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, Y. Ait-
Ichou, Photodegradation of 2-naphthol in water by artificial
light illumination using TiO2 photocatalyst: identification
of intermediates and the reaction pathway, Appl. Catal., A,
334 (2008) 386–393.
- K.H. Wang, Y.H. Hsieh, L.J. Chen, The heterogeneous
photocatalytic degradation, intermediates and mineralization
for the aqueous solution of cresols and nitrophenols, J. Hazard.
Mater., 59 (1998) 251–260.
- D. Bahnemann, Photocatalytic water treatment: solar energy
applications, Sol. Energy, 77 (2004) 445–459.
- Y. Hu, C. Yuan, Low-temperature preparation of photocatalytic
TiO2 thin films from anatase sols, J. Cryst. Growth, 274 (2005)
563–568.
- G. Sivalingam, G. Madras, Photocatalytic degradation of
poly(bisphenol-A-carbonate) in solution over combustionsynthesized
TiO2: mechanism and kinetics, Appl. Catal., A,
269 (2004) 81–90.
- H. Tang, Y. Fu, S. Chang, S. Xie, G. Tang, Construction of
Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for
the remediation of organic pollutants, Chin. J. Catal., 38 (2016)
337–347.
- G.F. Huang, Z.L. Ma, W.Q. Huang, Y. Tian, C. Jiao, Z.M. Yang, Z.
Wan, A. Pan, Ag3PO4 semiconductor photocatalyst: possibilities
and challenges, J. Nanomater., 2013 (2013) 1–8, doi: 10.1155/
2013/371356.
- Z. Frontistis, M. Antonopoulou, A. Petala, D. Venieri,
I. Konstantinou, D.I. Kondarides, D. Mantzavinos,
Photodegradation of ethyl paraben using simulated solar
radiation and Ag3PO4 photocatalyst, J. Hazard. Mater.,
323 (2017) 478–488.
- W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, Q. Xu, Synthesis
and characterization of high efficiency and stable Ag3PO4/TiO2
visible light photocatalyst for the degradation of methylene
blue and rhodamine B solutions, J. Mater. Chem., 22 (2012)
4050–4055.
- J. Wang, F. Teng, M. Chen, J. Xu, Y. Song, X. Zhou, Facile
synthesis of novel Ag3PO4 tetrapods and the {110} facetsdominated
photocatalytic activity, CrystEngComm, 15 (2012)
39–42.
- A. Wu, C. Tian, C. Wei, H. Yu, Q. Zhang, Q. Yang, H. Fu,
Morphology-controlled synthesis of Ag3PO4 nano/microcrystals
and their antibacterial properties, Mater. Res. Bull., 48 (2013)
3043–3048.
- J. Wan, E. Liu, J. Fan, X. Hu, L. Sun, C. Tang, Y. Yin, H. Li,
Y. Hu, In-situ synthesis of plasmonic Ag/Ag3PO4 tetrahedron
with exposed {111} facets for high visible-light photocatalytic
activity and stability, Ceram. Int., 41 (2015) 6933–6940.
- H. Yu, G. Cao, F. Chen, X. Wang, J. Yu, M. Lei, Enhanced
photocatalytic performance of Ag3PO4 by simutaneous loading
of Ag nanoparticles and Fe(III) cocatalyst, Appl. Catal., B,
160–161 (2014) 658–665.
- F.M. Zhao, L. Pan, S. Wang, Q. Deng, J.J. Zou, L. Wang, X. Zhang,
Ag3PO4/TiO2 composite for efficient photodegradation of
organic pollutants under visible light, Appl. Surf. Sci.,
317 (2014) 833–838.
- D. Wang, L. Li, Q. Luo, J. An, X. Li, R. Yin, M. Zhao, Enhanced
visible-light photocatalytic performances of Ag3PO4 surfacemodified
with small amounts of TiO2 and Ag, Appl. Surf. Sci.,
321 (2014) 439–446.
- Z. Xiu, H. Bo, Y. Wu, X. Hao, Graphite-like C3N4 modified
Ag3PO4 nanoparticles with highly enhanced photocatalytic
activities under visible light irradiation, Appl. Surf. Sci.,
289 (2014) 394–399.
- C. Li, Q. Long, C. Yin, Synthesis and characterization of high
photocatalytic activity and stable Ag3PO4/TiO2 fibers for
photocatalytic degradation of black liquor, Appl. Surf. Sci.,
319 (2014) 60–67.
- Z. Song, X. Dong, N. Wang, L. Zhu, Z. Luo, J. Fang, C. Xiong,
Efficient photocatalytic defluorination of perfluorooctanoic acid
over BiOCl nanosheets via a hole direct oxidation mechanism,
Chem. Eng. J., 317 (2017) 925–934.
- X. Gao, W. Peng, G. Tang, Q. Guo, Y. Luo, Highly efficient and
visible-light-driven BiOCl for photocatalytic degradation of
carbamazepine, J. Alloys Compd., 757 (2018) 455–465.
- W.W. Liu, R.F. Peng, Recent advances of bismuth oxychloride
photocatalytic material: property, preparation and performance
enhancement, J. Electron. Sci. Technol., (2020) 119–137, doi: 10.1016/
j.jnlest.2020.100020.
- W. Liu, Z. Dai, L. Yi, A. Zhu, D. Zhong, J. Wang, J. Pan, Intimate
contacted two-dimensional/zero-dimensional composite of
bismuth titanate nanosheets supported ultrafine bismuth
oxychloride nanoparticles for enhanced antibiotic residue
degradation, J. Colloid Interface Sci., 529 (2018) 23–33.
- J. Xie, Y. Yang, H. He, D. Cheng, M. Mao, Q. Jiang, L. Song,
J. Xiong, Facile synthesis of hierarchical Ag3PO4/TiO2
nanofiber heterostructures with highly enhanced visible
light photocatalytic properties, Appl. Surf. Sci., 355 (2015)
921–929.
- K. Zhu, N.R. Neale, A.F. Halverson, Y.K. Jin, A.J. Frank, Effects
of annealing temperature on the charge-collection and lightharvesting
properties of TiO2 nanotube-based dye-sensitized
solar cells, J. Phys. Chem. C, 114 (2010) 13433–13441.
- J. Lin, M. Guo, C.T. Yip, W. Lu, G. Zhang, X. Liu, L. Zhou,
X. Chen, H. Huang, High temperature crystallization of freestanding
anatase TiO2 nanotube membranes for high efficiency
dye-sensitized solar cells, Adv. Funct. Mater., 23 (2013)
5952–5960.
- J. Yu, H. Yu, B. Cheng, X. Zhao, J.C.Y. And, W.K. Ho, The effect
of calcination temperature on the surface microstructure and
photocatalytic activity of TiO2 thin films prepared by liquid
phase deposition, J. Phys. Chem. B, 107 (2003) 13871–13879.
- C.Q. Xu, K. Li, W.D. Zhang, Enhancing visible light
photocatalytic activity of nitrogen-deficient g-C3N4 via thermal
polymerization of acetic acid-treated melamine, J. Colloid
Interface Sci., 495 (2017) 27–36.
- X. Xing, M. Zhang, L. Hou, L. Xiao, Q. Li, J. Yang, Z-scheme
BCN-TiO2 nanocomposites with oxygen vacancy for high
efficiency visible light driven hydrogen production, Int. J.
Hydrogen Energy, 42 (2017) 28434–28444.
- X. Guo, N. Chen, C. Feng, Y. Yang, B. Zhang, G. Wang, Z. Zhang,
Performance of magnetically recoverable core–shell Fe3O4@
Ag3PO4/AgCl for photocatalytic removal of methylene blue
under simulated solar light, Catal. Commun., 38 (2013) 26–30.
- L. Ghalamchi, S. Aber, V. Vatanpour, M. Kian, A novel
antibacterial mixed matrixed PES membrane fabricated from
embedding aminated Ag3PO4/g-C3N4 nanocomposite for use
in the membrane bioreactor, J. Ind. Eng. Chem., 70 (2019)
412–426.
- L. Wang, J. Liu, Y. Wang, X. Zhang, D. Duan, C. Fan, Y. Wang,
Insight into the enhanced photocatalytic performance of
Ag3PO4 modified metastable hexagonal WO3, Colloids Surf., A,
541 (2018) 145–153.
- C. Dong, K.L. Wu, M.R. Li, L. Liu, X.W. Wei, Synthesis of
Ag3PO4–ZnO nanorod composites with high visible-light
photocatalytic activity, Catal. Commun., 46 (2014) 32–35.
- J.W. Park, S.G. Baek, Thermal behavior of direct-printed lines of
silver nanoparticles, Scr. Mater., 55 (2006) 1139–1142.
- T. Yan, W. Guan, J. Tian, P. Wang, W. Li, J. You, B. Huang,
Improving the photocatalytic performance of silver phosphate
by thermal annealing: influence of acetate species, J. Alloys
Compd., 680 (2016) 436–445.
- H. Wang, Y. Bai, J. Yang, X. Lang, J. Li, L. Guo, A facile way to
rejuvenate Ag3PO4 as a recyclable highly efficient photocatalyst,
Chem. Eur. J., 18 (2012) 5524–5529.
- J.C.C. Fan, J.B. Goodenough, X-ray photoemission spectroscopy
studies of Sn-doped indium-oxide films, J. Appl. Phys.,
48 (1977) 3524–3531.
- X.Z.L. And, F.B. Li, Study of Au/Au3+-TiO2 photocatalysts
toward visible photooxidation for water and wastewater
treatment, Environ. Sci. Technol., 35 (2001) 2381–2387.
- L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu,
J. Sun, Review of photoluminescence performance of nanosized
semiconductor materials and its relationships with
photocatalytic activity, Sol. Energy Mater. Sol. Cells, 90 (2006)
1773–1787.
- Y. Wang, W. Kang, X. Wang, Preparation of Ag3PO4/Ni3(PO4)2
hetero-composites by cation exchange reaction and its
enhancing photocatalytic performance, J. Colloid Interface Sci.,
466 (2015) 178–185.
- U.G. Akpan, B.H. Hameed, Parameters affecting the
photocatalytic degradation of dyes using TiO2-based
photocatalysts: a review, J. Hazard. Mater., 170 (2009)
520–529.
- K. Vinodgopal, P.V. Kamat, Photochemistry on surfaces:
photodegradation of 1,3-diphenylisobenzofuran over metal
oxide particles, J. Phys. Chem., 96 (1992) 5053–5059.
- H. Xu, W.J. Cooper, J. Jung, W. Song, Photosensitized
degradation of amoxicillin in natural organic matter isolate
solutions, Water Res., 45 (2011) 632–638.
- V. Repousi, A. Petala, Z. Frontistis, M. Antonopoulou,
I. Konstantinou, D.I. Kondarides, D. Mantzavinos, Photocatalytic
degradation of bisphenol A over Rh/TiO2 suspensions in
different water matrices, Catal. Today, 284 (2016) 59–66.
- G. Jayamani, M. Shanthi, An efficient nanocomposite CdSZnWO4 for the degradation of Naphthol Green B dye under
UV-A light illumination, Nanostruct. Nanoobjects, 22 (2020)
1–14, doi: 10.1016/j.nanoso.2020.100452.
- C. Zhou, Y. Zhao, J. Cao, H. Lin, S. Chen, Partial oxidation
controlled activity regeneration of used Ag3PO4 photocatalyst
via removing the in situ surface metallic silver, Appl. Surf. Sci.,
351 (2015) 33–39.
- Y. Wang, J. Liu, Y. Wang, C. Fan, G. Ding, Regeneration of
novel visible-light-driven Ag/Ag3PO4@C3N4 hybrid materials
and their high photocatalytic stability, Mater. Sci. Semicond.
Process., 25 (2014) 330–336.