References

  1. L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere, 229 (2019) 142–159.
  2. K.H. Vardhan, P.S. Kumar, R.C. Panda, A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives, J. Mol. Liq., 290 (2019) 111197, doi: 10.1016/j.molliq.2019.111197.
  3. X. Song, P. Gunawan, R. Jiang, S.S.J. Leong, K. Wang, R. Xu, Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions, J. Hazard. Mater., 194 (2011) 162–168.
  4. D. Kim, J. Min, J.Y. Yoo, J.W. Park, Eisenia fetida growth inhibition by amended activated carbon causes less bioaccumulation of heavy metals, J. Soils Sediments, 14 (2014) 1766–1773.
  5. L.Y. Li, X. Gong, O. Abida, Waste-to-resources: exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption, Waste Manage., 87 (2019) 375–386.
  6. L. Wang, Y. Wang, F. Ma, V. Tankpa, S. Bai, X. Guo, X. Wang, Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review, Sci. Total Environ., 668 (2019) 1298–1309.
  7. B.J. Ni, Q.S. Huang, C. Wang, T.Y. Ni, J. Sun, W. Wei, Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge, Chemosphere, 219 (2019) 351–357.
  8. F. Xiao, J. Cheng, W. Cao, C. Yang, J. Chen, Z. Luo, Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars, J. Colloid Interface Sci., 540 (2019) 579–584.
  9. H. Zhang, J. Chen, P. Liang, L. Wang, Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke, Environ. Sci., 24 (2012) 2083–2090.
  10. W.T. Wang, C.H. Li, Z.F. Yan, Study on molding semi-coke used for flue-gas desulphurization, Catal. Today, 158 (2010) 235–240.
  11. Z. Yan, L.L. Liu, Y.L. Zhang, J.P. Liang, J.P. Wang, Z.T. Zhang, X.D. Wang, Activated semi-coke in SO2 removal from flue gas: selection of activation methodology and desulfurization mechanism study, Energy Fuels, 27 (2013) 3080–3089.
  12. K. Zhang, Y. He, Z. Wang, T. Huang, Q. Li, S. Kumar, K. Cen, Multi-stage semi-coke activation for the removal of SO2 and NO, Fuel, 210 (2017) 738–747.
  13. W. Yang, C. Li, L. Wang, S.N. Sun, X. Yan, Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light, Appl. Surf. Sci., 353 (2015) 307–316.
  14. H.W. Zhang, X.L. Li, L. Wang, P. Liang, Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke, Sci. World J., 2014 (2014) 260141, doi: 10.1155/2014/260141.
  15. L. Zhang, Z. Liu, Y. Fan, A. Fan, X. Han, Modification of semicoke powder and its adsorption mechanisms for Cr(VI) and methylene blue, IOP Conf. Ser.: Earth Environ. Sci., 121 (2018) 022024, doi: 10.1088/1755-1315/121/2/022024.
  16. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  17. C. Ma, C. Zou, J. Zhao, R. Shi, X. Li, J. He, X. Zhang, Pyrolysis characteristics of low-rank coal under a CO-containing atmosphere and properties of the prepared coal chars, Energy Fuels, 33 (2019) 6098–6112.
  18. L. Zhang, S. Qi, N. Takeda, S. Kudo, J. Hayashi, K. Norinaga, Characteristics of gas evolution profiles during coal pyrolysis and its relation with the variation of functional groups, Int. J. Coal Sci. Technol., 5 (2018) 452–463.
  19. G.J. Shang, C.H. Li, M.Q. Miao, Z. Yang, Surface characterization and SO2 removal activity of activated semi-coke with heat treatment, New Carbon Mater., 23 (2008) 37–43.
  20. C.P. Ye, H.J. Huang, X.H. Li, W.Y. Li, J. Feng, The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes, Fuel, 207 (2017) 85–92.
  21. S. Sato, K. Yoshihara, K. Moriyama, M. Machida, H. Tatsumoto, Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution, Appl. Surf. Sci., 253 (2007) 8554–8559.
  22. L. Zhang, W. Li, H. Cao, D. Hu, X. Chen, Y. Guan, J. Tang, H. Gao, Ultra-efficient sorption of Cu2+ and Pb2+ ions by light biochar derived from Medulla tetrapanacis, Bioresour. Technol., 291 (2019) 121818, doi: 10.1016/j.biortech.2019.121818.
  23. J. Xu, X. Lv, J. Li, Y. Li, L. Shen, H. Zhou, X. Xu, Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support, J. Hazard. Mater., 225 (2012) 36–45.
  24. B. Zhou, Z. Wang, D. Shen, F. Shen, C. Wu, R. Xiao, Low cost earthworm manure-derived carbon material for the adsorption of Cu2+ from aqueous solution: impact of pyrolysis temperature, Ecol. Eng., 98 (2017) 189–195.
  25. N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian, X. Lu, Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization, Bioresour. Technol., 232 (2017) 204–210.
  26. P. Nanta, K. Kasemwong, W. Skolpap, Isotherm and kinetic modeling on superparamagnetic nanoparticles adsorption of polysaccharide, J. Environ. Chem. Eng., 6 (2018) 794–802.
  27. M.J. Moon, M.S. Jhon, The studies on the hydration energy and water structures in dilute aqueous solution, Bull. Chem. Soc. Jpn., 59 (1986) 1215–1222.
  28. V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  29. M. Matouq, N. Jildeh, M. Qtaishat, M. Hindiyeh, M.Q.A. Syouf, The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods, J. Environ. Chem. Eng., 37 (2015) 75–784.
  30. L.P. Zhang, H. Song, K. Xu, L. Jiang, Y. Wang, S. Su, Y.M. Xiao, L.Y. Shan, W.L. Shen, H.F. Li, G. Chen, H. Tang, Study on the structural evolution of semi-chars and their solvent extracted materials during pyrolysis process of a Chinese low-rank coal, Fuel, 214 (2018) 363–368.
  31. Z. Mahdi, Q.J. Yu, A. El-Hanandeh, Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar, J. Environ. Chem. Eng., 6 (2018) 1171–1181.
  32. T. Shen, Y. Tang, X.-Y. Lu, Z. Meng, Mechanisms of copper stabilization by mineral constituents in sewage sludge biochar, J. Cleaner Prod., 193 (2018) 185–193.
  33. B.S. Kim, H.W. Lee, S.H. Park, K. Baek, J.K. Jeon, H.J. Cho, S.C. Jung, S.C. Kim, Y.K. Park, Removal of Cu2+ by biochars derived from green macroalgae, Environ. Sci. Pollut. Res. Int., 23 (2016) 985–994.
  34. S.E. Elaigwu, V. Rocher, G. Kyriakou, G.M. Greenway, Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell, J. Ind. Eng. Chem., 20 (2014) 3467–3473.
  35. M.Gorgievskia, D. Božića,V. Stankovićb, N. Štrbacb, S. Šerbulab, Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw, Ecol. Eng., 58 (2013) 113–122.
  36. D.K. Venkata Ramana, K.R.D. Harikishore, J.S. Yu, K. Seshaiah, Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water, Chem. Eng. J., 197 (2012) 24–33.
  37. Z. Liu, F.S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater., 167 (2009) 933–939.
  38. G. Annadurai, R.S. Juang, D.J. Lee, Adsorption of heavy metals from water using banana and orange peels, Water Sci. Technol., 47 (2003) 185–190.
  39. Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, Y. Zhou, B. Zheng, X. Cai, Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism, RSC Adv., 6 (2016) 5223–5232.
  40. A.A. Abdelhafez, J. Li, Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel, J. Taiwan Inst. Chem. Eng., 61 (2016) 367–375.
  41. Z. Wang, G. Liu, H. Zheng, F. Li, H.H. Ngo, W. Guo, C. Liu, L. Chen, B. Xing, Investigating the mechanisms of biochar’s removal of lead from solution, Bioresour. Technol., 177 (2015) 308–317.
  42. Y. Yang, Z. Wei, X. Zhang, X. Chen, D. Yue, Q. Yin, L. Xiao, L. Yang, Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently, Bioresour. Technol., 171 (2014) 227–232.
  43. B. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar, Water Res., 46 (2012) 854–862.
  44. L. Wang, J. Zhang, R. Zhao, Y. Li, C. Li, C. Zhang, Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: kinetics, isotherms, pH, and ionic strength studies, Bioresour. Technol., 101 (2010) 5808–5814.
  45. N.H. Hsu, S.L. Wang, Y.H. Liao, S.T. Huang, Y.M. Tzou, Y.M. Huang, Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon, J. Hazard. Mater., 171 (2009) 1066–1070.
  46. P. Mao, L. Qi, X. Liu, L. Liu, Y. Jiao, S.W. Chen, L. Yang, Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water, J. Hazard. Mater., 328 (2017) 21–28.
  47. X.L. Zhao, Y. Wang, H.Y. Wu, P. Li, Insights into the effect of humic acid on Ni(II) sorption mechanism onillite: batch, XPS and EXAFS investigations, J. Mol. Liq., 248 (2017) 1030–1038.
  48. M. Barczak, K. Michalak-Zwierz, K. Gdula, K. Tyszczuk-Rotko, R. Dobrowolski, A. Dąbrowski, Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions, Microporous Mesoporous Mater., 211 (2015) 162–173.
  49. Z. Guo, J. Fan, J. Zhang, Y. Kang, H. Liu, L. Jiang, C. Zhang, Sorption heavy metal ions by activated carbons with welldeveloped microporosity and amino groups derived from Phragmites australis by ammonium phosphates activation, J. Taiwan Inst. Chem. Eng., 58 (2009) 290–296.