References
- J.R. Bacon, N.S. Dinev, Isotopic characterisation of lead in
contaminated soils from the vicinity of a non-ferrous metal
smelter near Plovdiv, Bulgaria, Environ. Pollut., 134 (2005)
247–255.
- V. Ettler, M. Mihaljevič, M. Komárek, ICP-MS measurements
of lead isotopic ratios in soils heavily contaminated by lead
smelting: tracing the sources of pollution, Anal. Bioanal. Chem.,
378 (2004) 311–317.
- M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical
precipitation of lead from lead battery recycling plant
wastewater, Ind. Eng. Chem. Res., 41 (2002) 1579–1582.
- Y.-F. Zhang, Z.-L. Xu, Study on the treatment of industrial
wastewater containing Pb2+ ion using a coupling process of
polymer complexation-ultrafiltration, Sep. Sci. Technol., 38
(2003) 1585–1596.
- A. Supong, P.C. Bhomick, M. Baruah, C. Pongener, U.B. Sinha,
D. Sinha, Adsorptive removal of bisphenol a by biomass
activated carbon and insights into the adsorption mechanism
through density functional theory calculations, Sustainable
Chem. Pharm., 13 (2019) 100159, doi: 10.1016/j.scp.2019.100159.
- F. Xu, D.-l. Ouyang, E.R. Rene, H.Y. Ng, L.-l. Guo, Y.-j. Zhu,
L.-l. Zhou, Q. Yuan, M.-s. Miao, Q. Wang, Q. Kong, Electricity
production enhancement in a constructed wetland-microbial
fuel cell system for treating saline wastewater, Bioresour.
Technol., 288 (2019) 121462, doi: 10.1016/j.biortech.2019.121462.
- S. Tong, Y.E.v. Schirnding, T. Prapamontol, Environmental lead
exposure: a public health problem of global dimensions, Bull.
World Health Organ., 78 (2000) 1068–1077.
- O.A. Ramírez, O.M. Abdeldayem, A. Pugazhendhi, E.R. Rene,
Current updates and perspectives of biosorption technology: an
alternative for the removal of heavy metals from wastewater,
Curr. Pollut. Rep., 6 (2020) 8–27.
- E. Suhartono, Y.W. Ulfarini, T. Triawanti, W.A. Mustaqim,
R.T. Firdaus, M.H.M. Setiawan, Increased bone calcium
dissociation in lead-exposed rats, Universa Med., 31 (2015)
151–158.
- E. Baker, P. Landrigan, A. Barbour, D. Cox, D. Folland, R. Ligo,
J. Throckmorton, Occupational lead poisoning in the United
States: clinical and biochemical findings related to blood lead
levels, Occup. Environ. Med., 36 (1979) 314–322.
- L. Gerhardsson, D.R. Chettle, V. Englyst, G.F. Nordberg,
H. Nyhlin, M.C. Scott, A.C. Todd, O. Vesterberg, Kidney effects
in long term exposed lead smelter workers, Br. J. Ind. Med.,
49 (1992) 186–192.
- A. Kumar, P.K. Dey, P.N. Singla, R.S. Ambasht, S.K. Upadhyay,
Blood lead levels in children with neurological disorders,
J. Trop. Pediatr., 44 (1998) 320–322.
- B. Somashekaraiah, B. Venkaiah, A. Prasad, Biochemical
diagnosis of occupational exposure to lead toxicity, Bull.
Environ. Contam. Toxicol., 44 (1990) 268–275.
- P.C. Mishra, R.K. Patel, Removal of lead and zinc ions from
water by low cost adsorbents, J. Hazard. Mater., 168 (2009)
319–325.
- EPB, Environmental quality Standards for Surface Water
(GB 3838–2002), Environmental Protection Bureau, Beijing,
2002.
- L. Singh Thakur, Heavy metal Cu, Ni and Zn: Toxicity, health
hazards and their removal techniques by low cost adsorbents: a
short overview, Int. J. Plant. Sci., 3 (2013) 143–157.
- M. Naushad, Surfactant assisted nano-composite cation
exchanger: development, characterization and applications for
the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J.,
235 (2014) 100–108.
- A.A.H. Faisal, S.F.A. Al-Wakel, H.A. Assi, L.A. Naji,
M. Naushad, Waterworks sludge-filter sand permeable reactive
barrier for removal of toxic lead ions from contaminated groundwater,
J. Water Process. Eng., 33 (2020) 101112, doi: 10.1016/j.
jwpe.2019.101112.
- M. Naushad, A. Mittal, M. Rathore, V. Gupta, Ion-exchange
kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions
over a composite cation exchanger, Desal. Water Treat., 54
(2015) 2883–2890.
- D. Lakherwal, Adsorption of heavy metals: a review, Int. J.
Environ. Res. Dev., 4 (2014) 41–48.
- K.Y. Foo, B.H. Hameed, An overview of landfill leachate
treatment via activated carbon adsorption process, J. Hazard.
Mater., 171 (2009) 54–60.
- S.M. Yakout, A.E.H.M. Daifullah, S.A. El-Reefy, Pore structure
characterization of chemically modified biochar derived from
rice straw, Environ. Eng. Manage. J., 14 (2015) 473–480.
- W. Gwenzi, N. Chaukura, C. Noubactep, F.N.D. Mukome,
Biochar-based water treatment systems as a potential lowcost
and sustainable technology for clean water provision,
J. Environ. Manage., 197 (2017) 732–749.
- M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan,
D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent
for contaminant management in soil and water: a review,
Chemosphere, 99 (2014) 19–33.
- M. Inyang, B. Gao, Y. Yao, Y. Xue, A.R. Zimmerman,
P. Pullammanappallil, X. Cao, Removal of heavy metals from
aqueous solution by biochars derived from anaerobically
digested biomass, Bioresour. Technol., 110 (2012) 50–56.
- Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao,
Sorption of heavy metals on chitosan-modified biochars and
its biological effects, Chem. Eng. J., 231 (2013) 512–518.
- T.A. Saleh, M. Tuzen, A. Sarı, Magnetic activated carbon loaded
with tungsten oxide nanoparticles for aluminum removal
from waters, J. Environ. Chem. Eng., 5 (2017) 2853–2860.
- R. Shan, Y. Shi, J. Gu, Y. Wang, H. Yuan, Single and competitive
adsorption affinity of heavy metals toward peanut shell-derived
biochar and its mechanisms in aqueous systems, Chin. J. Chem.
Eng., 28 (2020) 1375–1383.
- B. Chen, Z. Chen, S. Lv, A novel magnetic biochar efficiently
sorbs organic pollutants and phosphate, Bioresour. Technol.,
102 (2011) 716–723.
- I. Šafařík, K. Nymburská, M. Šafaříková, Adsorption of watersoluble
organic dyes on magnetic charcoal, J. Chem. Technol.,
69 (1997) 1–4.
- G. Zhang, J. Qu, H. Liu, A.T. Cooper, R.J.C. Wu, CuFe2O4/activated carbon composite: a novel magnetic adsorbent
for the removal of acid orange II and catalytic regeneration,
Chemosphere, 68 (2007) 1058–1066.
- S. Liu, H.A. Wiatrowski, Reduction of Hg(II) to Hg(0) by
magnetite from two magnetotactic bacterial, Geomicrobiol.
J., 43 (2009) 5307–5313.
- N. Subedi, A. Lähde, E. Abu-Danso, J. Iqbal, A. Bhatnagar,
A comparative study of magnetic chitosan (Chi@Fe3O4) and
graphene oxide modified magnetic chitosan (Chi@Fe3O4GO)
nanocomposites for efficient removal of Cr(VI) from water, Int.
J. Biol. Macromol., 137 (2019) 948–959.
- M. Imran, Z.U.H. Khan, J. Iqbal, N.S. Shah, M. Rizwan, Potential
of siltstone and its composites with biochar and magnetite
nanoparticles for the removal of cadmium from contaminated
aqueous solutions: batch and column scale studies, Environ.
Pollut., 259 (2020) 113938, doi: 10.1016/j.envpol.2020.113938.
- D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco,
C.U. Pittman, Development of magnetic activated carbon from
almond shells for trinitrophenol removal from water, Chem.
Eng. J., 172 (2011) 1111–1125.
- M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.-K. Sung, J.E. Yang,
Y.S. Ok, Effects of pyrolysis temperature on soybean stover-and
peanut shell-derived biochar properties and TCE adsorption in
water, Bioresour. Technol., 118 (2012) 536–544.
- N. Mahinpey, P. Murugan, T. Mani, R. Raina, Analysis of bio-oil,
biogas, and biochar from pressurized pyrolysis of wheat straw
using a tubular reactor, Energy Fuel, 23 (2009) 2736–2742.
- A. Samsuri, F. Sadegh-Zadeh, B. Seh-Bardan, Characterization
of biochars produced from oil palm and rice husks and their
adsorption capacities for heavy metals, Int. J. Environ. Sci.
Technol., 11 (2014) 967–976.
- J. Lu, C. Zhang, J. Wu, Y. Luo, Adsorptive removal of bisphenol
a using N-doped biochar made of Ulva prolifera, Water Air Soil
Pollut., 228 (2017) 327, doi: 10.1007/s11270-017-3516-0.
- N. Silanikove, Effect of CaO-OR NaOH-hydrogen peroxide
treatments on the composition and in-vitro digestibility of
cotton straw, Bioresour. Technol., 48 (1994) 71–73.
- M. Hussain, M. Imran, G. Abbas, M. Shahid, M. Iqbal,
M.A. Naeem, B. Murtaza, M. Amjad, N.S. Shah, Z. Ul Haq
Khan, A. Ul Islam, A new biochar from cotton stalks for As(V)
removal from aqueous solutions: its improvement with H3PO4
and KOH, Environ. Geochem. Health, 42 (2019) 2519–2534.
- Y.-d. Du, H.-q. Liu, L. Shu, Y. Feng, Q. Kong, F. Xu, Q. Wang,
C.-c. Zhao, Adsorption of ofloxacin from aqueous solution
using low-cost biochar obtained from cotton stalk, Desal. Water
Treat., 135 (2018) 372–380.
- Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng,
L. Wang, H. Xiao, S. Deng, Biochar produced from oak sawdust
by Lanthanum (La)-involved pyrolysis for adsorption of
ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−),
Chemosphere, 119 (2015) 646–653.
- L. GaParovi, Z. Koreňová, U. Jelemensky, Kinetic study of wood
chips decomposition by TGA, Chem. Pap., 64 (2010) 174–181.
- I.I. Gurten, M. Ozmak, E. Yagmur, Z. Aktas, Preparation and
characterisation of activated carbon from waste tea using
K2CO3, Biomass Bioenergy, 37 (2012) 73–81.
- K. Fu, Q. Yue, B. Gao, Y. Sun, L. Zhu, Preparation, characterization
and application of lignin-based activated carbon from black
liquor lignin by steam activation, Chem. Eng. J., 228 (2013)
1074–1082.
- A.-Y. Wang, K. Sun, L. Wu, P. Wu, W. Zeng, Z. Tian,
Q.-X. Huang, Co-carbonization of biomass and oily
sludge to prepare sulfamethoxazole super-adsorbent materials,
Sci. Total Environ., 698 (2020) 134238, doi: 10.1016/j.
scitotenv.2019.134238.
- R. Li, H. Deng, X. Zhang, J.J. Wang, M.K. Awasthi, Q. Wang,
R. Xiao, B. Zhou, J. Du, Z. Zhang, High-efficiency removal of
Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar,
Bioresour. Technol., 273 (2019) 335–340.
- Y. Zhao, R. Zhang, H. Liu, M. Li, T. Chen, D. Chen, X. Zou,
R.L. Frost, Green preparation of magnetic biochar for the
effective accumulation of Pb(II): performance and mechanism,
Chem. Eng. J., 375 (2019) 122011, doi: 10.1016/j.cej.2019.122011.
- C. Sun, T. Chen, Q. Huang, J. Wang, S. Lu, J. Yan, Enhanced
adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar
by KMnO4 modification, Environ. Sci. Pollut. Res., 26 (2019)
8902–8913.
- F. Lian, G. Cui, Z. Liu, L. Duo, G. Zhang, B. Xing, One-step
synthesis of a novel N-doped microporous biochar derived
from crop straws with high dye adsorption capacity, J. Environ.
Manage., 176 (2016) 61–68.
- Y.-n. Wang, Q. Liu, L. Shu, M.-s. Miao, Y.-z. Liu, Q. Kong,
Removal of Cr(VI) from aqueous solution using Fe-modified
activated carbon prepared from luffa sponge: kinetic,
thermodynamic, and isotherm studies, Desal. Water Treat.,
57 (2016) 29467–29478.
- C. Wang, H. Wang, Pb(II) sorption from aqueous solution
by novel biochar loaded with nano-particles, Chemosphere,
192 (2018) 1–4.
- Z. Huang, Q. Lu, J. Wang, X. Chen, X. Mao, Z. He, Inhibition
of the bioavailability of heavy metals in sewage sludge biochar
by adding two stabilizers, PLoS One, 12 (2017) e0183617,
doi: 10.1371/journal.pone.0183617.
- S. Muljani, B.W. Wahyudi, S. Suprihatin, K.J.R. Sumada,
Synthesis of matrix Si-K-HAs gel from geothermal sludge and
peat, REAKTOR, 18 (2018) 76–83.
- Ö. Tamer, D. Avcı, Y. Atalay, Quantum chemical characterization
of N-(2-hydroxybenzylidene) acetohydrazide (HBAH): a
detailed vibrational and NLO analysis, Spectrochim. Acta,
Part A, 117 (2014) 78–86.
- F.A. Lothfy, M.F. Haron, H.A. Rafaie, Fabrication and
characterization of jackfruit seed powder and polyvinyl alcohol
blend as biodegradable plastic, J. Photopolym. Sci. Technol.,
3 (2018) 1–5.
- S. Liang, Y. Han, L. Wei, A.G. McDonald, Production and
characterization of bio-oil and bio-char from pyrolysis of potato
peel wastes, Biomass Convers. Biorefin., 5 (2015) 237–246.
- N. Prakongkep, R.J. Gilkes, W. Wiriyakitnateekul, Forms and
solubility of plant nutrient elements in tropical plant waste
biochars, J. Plant Nutr. Soil Sci., 178 (2015) 732–740.
- S. Zhang, L. Tao, M. Jiang, G. Gou, Z. Zhou, Single-step synthesis
of magnetic activated carbon from peanut shell, Mater. Lett.,
157 (2015) 281–284.
- J. Lu, C. Zhang, J. Wu, One-pot synthesis of magnetic algal
carbon/sulfidated nanoscale zerovalent iron composites for
removal of bromated disinfection by-product, Chemosphere,
250 (2020) 126257, doi: 10.1016/j.chemosphere.2020.126257.
- C. Zhang, J. Lu, J. Wu, One-step green preparation of magnetic
seaweed biochar/sulfidated Fe0 composite with strengthen
adsorptive removal of tetrabromobisphenol A through in situ
reduction, Bioresour. Technol., 307 (2020) 123170, doi: 10.1016/j.
biortech.2020.123170.
- J. Iqbal, N.S. Shah, M. Sayed, M. Imran, N. Muhammad,
F.M. Howari, S.A. Alkhoori, J.A. Khan, Z.U.H. Khan,
A. Bhatnagar, Synergistic effects of activated carbon and nanozerovalent
copper on the performance of hydroxyapatitealginate
beads for the removal of As3+ from aqueous solution,
J. Cleaner Prod., 235 (2019) 875–886.
- G.-X. Yang, H. Jiang, Amino modification of biochar for
enhanced adsorption of copper ions from synthetic wastewater,
Water Res., 48 (2014) 396–405.
- Z. Zhou, Y.-g. Liu, S.-b. Liu, H.-y. Liu, G.-m. Zeng, X.-f. Tan,
C.-p. Yang, Y. Ding, Z.-l. Yan, X.-x. Cai, Sorption performance
and mechanisms of arsenic(V) removal by magnetic gelatinmodified
biochar, Chem. Eng. J., 314 (2017) 223–231.
- A. Mukherjee, A. Zimmerman, W. Harris, Surface chemistry
variations among a series of laboratory-produced biochars,
Geoderma, 163 (2011) 247–255.
- A. Üçer, A. Uyanik, Ş. Aygün, Adsorption of Cu(II), Cd(II),
Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised
activated carbon, Sep. Purif. Technol., 47 (2006) 113–118.
- A. Maged, J. Iqbal, S. Kharbish, I.S. Ismael, A. Bhatnagar,
Tuning tetracycline removal from aqueous solution onto
activated 2:1 layered clay mineral: characterization, sorption
and mechanistic studies, J. Hazard. Mater., 384 (2020) 121320,
doi: 10.1016/j.jhazmat.2019.121320.
- H. Liu, F. Li, L. Chen, J. Ding, M. Sun, Adsorptive removal of
Pb(II) ions with magnetic metal-organic frameworks from
aqueous samples, Gen. Chem., 3 (2017) 134–139.
- K.-W. Jung, T.-U. Jeong, J.-W. Choi, K.-H. Ahn, S.-H. Lee,
Adsorption of phosphate from aqueous solution using
electrochemically modified biochar calcium-alginate beads:
batch and fixed-bed column performance, Bioresour. Technol.,
244 (2017) 23–32.
- B. Özkaya, Adsorption and desorption of phenol on activated
carbon and a comparison of isotherm models, J. Hazard. Mater.,
129 (2006) 158–163.
- L. Wang, Y. Wang, F. Ma, V. Tankpa, S. Bai, X. Guo, X. Wang,
Mechanisms and reutilization of modified biochar used for
removal of heavy metals from wastewater: a review, Sci. Total
Environ., 668 (2019) 1298–1309.
- Poonam, B.S. Kumar, K. Narendra, Kinetic study of lead (Pb2+)
removal from battery manufacturing wastewater using bagasse
biochar as biosorbent, Appl. Water Sci., 8 (2018) 119.
- Y. Wang, Y. Wang, L. Jiang, Freestanding carbon aerogels
produced from bacterial cellulose and its Ni/MnO2/Ni(OH)2
decoration for supercapacitor electrodes, J. Appl. Electrochem.,
48 (2018) 495–507.
- Y. Shen, P. Zhao, Q. Shao, F. Takahashi, K. Yoshikawa, In situ
catalytic conversion of tar using rice husk char/ash supported
nickel-iron catalysts for biomass pyrolytic gasification
combined with the mixing-simulation in fluidized-bed gasifier,
Appl. Energy, 160 (2015) 808–819.
- R.P. Mohubedu, P.N. Diagboya, C.Y. Abasi, E.D. Dikio,
F. Mtunzi, Magnetic valorization of biomass and biochar of a
typical plant nuisance for toxic metals contaminated water
treatment, J. Cleaner Prod., 209 (2019) 1016–1024.
- H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang, Removal
of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar
derived from KMnO4 treated hickory wood, Bioresour. Technol.,
197 (2015) 356–362.
- V. Gupta, A. Mittal, L. Krishnan, V. Gajbe, Adsorption kinetics
and column operations for the removal and recovery of
malachite green from wastewater using bottom ash, Sep. Purif.
Technol., 40 (2004) 87–96.