References
- C. Kahrs, M. Metze, C. Fricke, J. Schwellenbach, Thermodynamic
analysis of polymer solutions for the production of polymeric
membranes, J. Mol. Liq., 291 (2019) 1–12.
- V. Dhineshkumar, D. Ramasamy, Review on membrane
technology applications in food and dairy processing, J. Appl.
Biotechnol. Bioeng., 3 (2017) 399–407.
- T. Marino, F. Galiano, S. Simone, A. Figoli, DMSO EVOL™
as novel non-toxic solvent for polyethersulfone membrane
preparation, Environ. Sci. Pollut. Res., 26 (2019) 14774–14785.
- K.M. Medeiros, E.M. Araujo, H.L. Lira, D.F. Lima, C.A.P Lima,
G.G.C. Lima, Analysis of pore size of hybrid membranes for
separation of microemulsions, Desal. Water Treat., 110 (2018)
65–75.
- M. Mulder, Basic Principles of Membrane Technology, 2nd ed.,
Kluwer Academic Publishers, Springer, Netherlands, 1996.
- R.W. Baker, Membrane Technology and Applications, 2nd ed.,
John Wiley & Sons Ltd., Menlo Park, 2004.
- M. Razali, J.F. Kim, M. Attfield, P.M. Budd, E. Drioli, Y.M. Leeb,
G. Szekely. Sustainable wastewater treatment and recycling in
membrane manufacturing, Green Chem., 17 (2015) 5196–5205.
- C.H. Loh, B. Wu, L. Ge, C. Pan, R. Wang, High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using
sequencing batch reactor and membrane bioreactor: a feasibility
study, Chemosphere, 194 (2018) 534–542.
- P. Dou, J. Song, S. Zhao, S. Xu, X. Li, T. He, Novel low cost
hybrid extraction-distillation-reverse osmosis processfor
complete removal of N,N-dimethylformamide from industrial
wastewater, Process Saf. Environ. Prot., 130 (2019) 317–325.
- D. Bahnemann, Photocatalytic water treatment: solar energy
applications, Sol. Energy, 77 (2004) 445–459.
- U.I. Gaya, A.H. Abdullah, M.Z. Hussein, Z. Zainal, Photocatalytic
removal of 2,4,6-trichlorophenol from water exploiting
commercial ZnO powder, Desalination, 263 (2010) 176–182.
- B. Kim, D. Kim, D. Cho, S. Cho, Bactericidal effect of TiO2
photocatalyst on selected food-borne pathogenic bacteria,
Chemosphere, 52 (2003) 277–281.
- L. Soares, A. Alves, Photocatalytic properties of TiO2 and
TiO2/WO3 films applied as semiconductors in heterogeneous
photocatalysis, Mater. Lett., 211 (2018) 339–342.
- D. Friedmann, A. Hakki, H. Kim, W. Choic, D. Bahnemann,
Heterogeneous photocatalytic organic synthesis: state-of-theart
and future perspectives, Green Chem., 18 (2016)
5391–5411.
- L. Chen, J. Tang, L.N. Song, P. Chen, J. He, C. Au, S. Yin,
Heterogeneous photocatalysis for selective oxidation of
alcohols and hydrocarbons, Appl. Catal., B, 242 (2019) 379–388.
- O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of
titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi,
M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis:
mechanisms and materials, Chem. Rev., 114 (2014) 9919–9986.
- M. Yasmina, K. Mourad, S.H. Mohammed, C. Khaoula,
Treatment heterogeneous photocatalysis; factors influencing
the photocatalytic degradation by TiO2, Energy Procedia,
50 (2014) 559–566.
- R.S.B. Ferreira, C.H.Ó. Pereira, E.A. Santos Filho, A.M.D. Leite,
E.M. Araújo, H.L. Lira, Coagulation bath in the production of
membranes of nanocomposites polyamide 6/Clay, Mater. Res.,
20 (2017) 117–125.
- M.A.Y. Cervantes, J.L.S. Garcıa, M.I.L. Bastarrachea, S.D. Aranda,
F.A.R. Trevino, M.A. Vega, Sulfonated polyphenylsulfone
asymmetric membranes: effect of coagulation bath (acetic
acid-NaHCO3/isopropanol) on morphology and antifouling
properties, J. Appl. Polym. Sci., 134 (2016) 1–10.
- A.B. Sadi, R.K. Bilali, S.A. Abubshait, H. Kochkar, Low
temperature design of titanium dioxide anatase materials
decorated with cyanuric acid for formic acid photodegradation,
J. Saudi Chem. Soc., 24 (2020) 351–363.
- R.B. Baird, A.D. Eaton, E.W. Rice, Standard Methods for the
Examination of Water and Wastewater, 23rd ed., American
Public Health Association, Washington, DC, 2017.
- P. Ngaotrakanwiwat, P. Heawphet, P. Rangsunvigit,
Enhancement of photoelectrochemical cathodic protection
of copper in marine condition by Cu-doped TiO2, Catalysts,
10 (2020) 146–155.
- X. Yang, Y. Wang, L. Zhang, H. Fu, P. He, D. Han, T. Lawson,
X. An, The use of tunable optical absorption plasmonic Au
and Ag decorated TiO2 structures as efficient visible light
photocatalysts, Catalysts, 10 (2020) 139–153.
- S. Joseph, B. Mathew, Microwave assisted biosynthesis of silver
nanoparticles using the rhizome extract of alpinia galanga
and evaluation of their catalytic and antimicrobial activities,
J. Nanopart., 2014 (2014) 1–9.
- K. Dai, H. Chen, T. Peng, D. Ke, H. Yi, Photocatalytic degradation
of methyl orange in aqueous suspension of mesoporous titania
nanoparticles, Chemosphere, 69 (2007) 1361–1367.
- J. Vakros, The influence of preparation method on the
physicochemical characteristics and catalytic activity of Co/TiO2
catalysts, Catalysts, 10 (2020) 88–103.
- X. Qin, L. Jing, G. Tiana, Y. Qu, Y. Feng, Enhanced photocatalytic
activity for degrading rhodamine B solution of commercial
Degussa P25 TiO2 and its mechanisms, J. Hazard. Mater.,
172 (2009) 1168–1174.
- V.G. Bessergenev, M.C. Mateus, A.M.B. Rego, M. Hantuschc,
E. Burkel, An improvement of photocatalytic activity of TiO2
degussa P25 powder, Appl. Catal., A, 500 (2015) 42–50.
- M. Šihor, M. Reli, M. Vaštyl, K. Hrádková, L. Matejová, K. Kocí,
Photocatalytic oxidation of methyl tert-butyl ether in presence
of various phase compositions of TiO2, Catalysts, 10 (2020)
35–47.
- S.M. El-Sheikh, T.M. Khedr, A. Hakki, A.A. Ismail, W.A. Badawy,
D.W. Bahnemann, Visible light activated carbon and
nitrogen Co-doped mesoporous TiO2 as efficient photocatalyst
for degradation of ibuprofen, Sep. Purif. Technol., 173 (2017)
258–268.
- S.M. Amorim, J. Suave, L. Andrade, A.M. Mendes, H.J. José,
R.F.P.M. Moreira, Towards an efficient and durable self-cleaning
acrylic paint containing mesoporous TiO2 microspheres, Prog.
Org. Coat., 118 (2018) 48–56.
- A.D. Vishwanath, J.S. Shankar, N.M. Eknath, A.A. Eknath,
K.N. Haribhau, Preparation, characterization and photocatalytic
activities of TiO2 towards methyl red degradation, Orient.
J. Chem., 33 (2017) 104–112.
- I.H. Choi, Y.C. Cho, G. Moon, H.N. Kang, Y.B. Oh, J.Y. Lee,
J. Kang, Recent developments in the recycling of spent selective
catalytic reduction catalyst in South Korea, Catalysts, 10 (2019)
182–203.
- D. Chen, L. Cao, F. Huang, P. Imperia, Y.B. Cheng, R.A. Caruso.
Synthesis of monodisperse mesoporous titania beads with
controllable diameter, high surface areas, and variable pore
diameters (14–23 nm), J. Am. Chem. Soc., 132 (2010) 4438–4444.
- C. Marinescu, A. Sofronia, C. Rusti, R. Piticescu, V. Badilita,
E. Vasile, R. Baies, S. Tanasescu, DSC investigation of nanocrystalline
TiO2 powder, J. Therm. Anal. Calorim., 103 (2011)
49–57.
- S.D. Delekar, H.M. Yadav, S.N. Achary, S.S. Meena, S.H. Pawar,
Structural refinement and photocatalytic activity of Fe-doped
anatase TiO2 nanoparticles, Appl. Surf. Sci., 263 (2012) 536–545.
- J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F– Doping on the
photocatalytic activity and microstructures of nanocrystalline
TiO2 powders, Chem. Mater., 14 (2002) 3808–3816.
- V.G. Gandhi, M.K. Mishra, M.S. Rao, A. Kumar, P.A. Joshi,
D.O. Shah, Comparative study on nano-crystalline titanium
dioxide catalyzed photocatalytic degradation of aromatic
carboxylic acids in aqueous medium, J. Ind. Eng. Chem.,
17 (2011) 331–339.
- S.J. Darzi, A.R. Mahjoub, A. Nilchi, Synthesis of spongelike
mesoporous anatase and its photocatalytic properties, J. Chem.
Chem. Eng., 29 (2010) 37–42.
- J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, J. Liu,
Facile synthesis of carbon-doped mesoporous anatase TiO2
for the enhanced visible-light driven photocatalysis, Chem.
Commun., 50 (2014) 13971–13974.
- A.G.S. Galdino, E.M. Oliveira, F.B.F. Monteiro, C.A.C. Zavaglia,
Analysis of in vitro tests of the 50% HA-50% TiO2 composite
manufactured using the polymeric sponge method, Ceramics,
60 (2014) 586–593.
- Z. Ma, X. Ma, X. Wang, N. Liu, X. Liu, B. Hou, Study on the
photocathodic protection of Q235 steel by CdIn2S4 sensitized
TiO2 composite in splash zone, Catalysts, 9 (2019) 1067–1080.
- A. Matioli, J. Miagava, D. Gouvêa, Modification of the stability
of nanometric TiO2 polymorphs by excess SnO2 surface,
Ceramics, 58 (2012) 53–57.
- H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M.H. Isa,
Photocatalytic oxidation of organic dyes and pollutants in
wastewater using different modified titanium dioxides: a comparative
review, J. Ind. Eng. Chem., 26 (2015) 1–36.
- R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li,
J. Yang, D.W. Bahnemann, J.H. Pan, Charge carrier trapping,
recombination and transfer during TiO2 photocatalysis:
an overview, Catal. Today, 335 (2019) 78–90.
- S. Sohrabnezhad, Study of catalytic reduction and
photodegradation of methylene blue by heterogeneous catalyst,
Spectrochim. Acta, Part A, 81 (2011) 228–235.
- J. Dostanic, B. Grbic, N. Radic, S. Stojadinovic, R. Vasilic,
Z. Vukovic, Preparation and photocatalyic properties of TiO2-P25
film prepared by spray pyrolysis method, Appl. Surf. Sci.,
274 (2013) 321–327.
- B. Choudhury, A. Choudhury, Luminescence characteristics of
cobalt doped TiO2 nanoparticles, J. Lumin., 132 (2012) 178–184.
- L.G. Devi, B.N. Murhty, S.G. Kumar, Photo catalytic degradation
of imidachloprid under solar light using metal ion doped TiO2
nano particles: influence of oxidation state and electronic
configuration of dopants, Catal. Lett., 130 (2009) 496–503.
- V.G. Gandhi, M.K. Mishra, P.A. Joshi, A study on deactivation
and regeneration of titanium dioxide during photocatalytic
degradation of phthalic acid, J. Ind. Eng. Chem., 18 (2012)
1902–1907.
- T. Venkov, K. Hadjiivanov, FTIR study of CO interaction with
Cu/TiO2, Catal. Commun., 4 (2003) 209–213.
- P.C.S. Bezerra, R.P. Cavalcante, A. Garcia, H. Wender,
M.A.U. Martines, G.A. Casagrande, J. Giménez, P. Marco,
S.C. Oliveira, A. Machulek Jr., Synthesis, characterization, and
photocatalytic activity of pure and N-, B-, or Ag-doped TiO2,
J. Braz. Chem. Soc., 28 (2017) 1788–1802.
- G. Szekely, M.F. Jimenez-Solomon, P. Marchetti, J.F. Kim,
A.G. Livingston, Sustainability assessment of organic solvent
nanofiltration: from fabrication to application, Green Chem.,
16, (2014) 4440–4473.
- F. Riboni, M.V. Dozzi, M.C. Paganini, E. Giamello, E. Selli,
Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid
oxidation, Catal. Today, 287 (2017) 176–181.
- P.L.K. Ardila, B.F. Silva, M. Spadoto, B.C.M. Rispoli,
E.B. Azevedo, Which route to take for diclofenac removal
from water: hydroxylation or direct photolysis?, J. Photochem.
Photobiol., A, 382 (2019) 1–7.
- V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano,
L. Palmisano, S. Yurdakal, Overview on oxidation mechanisms
of organic compounds by TiO2 in heterogeneous photocatalysis,
J. Photochem. Photobiol., C, 13 (2012) 224–245.
- T. Ma, S. Garg, C.J. Miller, T.D. Waite, Contaminant degradation
by irradiated semiconducting silver chloride particles: kinetics
and modelling, J. Colloid Interface Sci., 446 (2015) 366–372.
- N. Negishi, M. Sugasawa, Y. Miyazaki, Y. Hirami, S. Koura,
Effect of dissolved silica on photocatalytic water purification
with a TiO2 ceramic catalyst, Water Res., 150 (2019) 40–46.
- M. Hamandi, G. Berhault, C. Guillard, H. Kochkar, Influence of
reduced graphene oxide on the synergism between rutile and
anatase TiO2 particles in photocatalytic degradation of formic
acid, Mol. Catal., 432 (2017) 125–130.
- W. El-Alami, D.G. Sousa, C.F. Rodríguez, O.G. Díaz,
J.M.D. Rodríguez, M.E. Azzouzi, J. Araña, Efect of Ti-F surface
interaction on the photocatalytic degradation of phenol, aniline
and formic acid, J. Photochem. Photobiol., A, 348 (2017) 139–149.
- K.L. Miller, C.W. Lee, J.L. Falconer, J.W. Medlin, Effect of water
on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2, J. Catal., 275 (2010) 294–299.
- S. Papoutsakis, S.M. Cuevas, N. Gondrexon, S. Baup, S. Malato,
C. Pulgarin, Coupling between high-frequency ultrasound and
solar photo-Fenton at pilot scale for the treatment of organic
contaminants: an initial approach, Ultrason. Sonochem.,
22 (2015) 527–534.
- P. Anca, M.C. Anca, C. Nicula, L.M. Cozmuta, A. Jastrzębska,
A. Olszyna, L. Baia, UV light-assisted degradation of methyl
orange, methylene blue, phenol, salicylic acid, and rhodamine
B: photolysis versus photocatalyis, Water Air Soil Pollut.,
228 (2017) 28–41.
- T. Soltani, M.H. Entezari, Photolysis and photocatalysis of
methylene blue by ferrite bismuth nanoparticlesunder sunlight
irradiation, J. Mol. Catal. A: Chem., 377 (2013) 197–203.
- M. Sanchez, M.J. Rivero, I. Ortiz, Kinetics of
dodecylbenzenesulphonate mineralisation by TiO2
photocatalysis, Appl. Catal., B, 101 (2011) 515–521.
- A.Turki, C. Guillard, F. Dappozze, G. Berhault, Z. Ksibi,
H. Kochkar, Design of TiO2 nanomaterials for the photodegradation
of formic acid - adsorption isotherms and kinetics
study, J. Photochem. Photobiol., A, 279 (2014) 8–16.
- W.S. Lopes, M.G.C. Azevedo, V.D. Leite, J.T. Sousa, J.S. Buriti,
Degradation of 17α-ethinylestradiol in water by heterogeneous
photocatalysis, Environ. Water Interdiscip. J. Appl. Sci.,
10 (2015) 728–736.
- S. Wang, F. Shiraishi, K. Nakano, A synergistic effect of
photocatalysis and ozonation on decomposition of formic acid
in an aqueous solution, Chem. Eng. J., 87 (2002) 261–271.
- J.F. Montoya, J.A. Velásquez, P. Salvador, The direct-indirect
kinetic model in photocatalysis: a reanalysis of phenol and
formic acid degradation rate dependence on photon flow and
concentration in TiO2 aqueous dispersions, Appl. Catal., B,
88 (2009) 50–58.