References

  1. C. Kahrs, M. Metze, C. Fricke, J. Schwellenbach, Thermodynamic analysis of polymer solutions for the production of polymeric membranes, J. Mol. Liq., 291 (2019) 1–12.
  2. V. Dhineshkumar, D. Ramasamy, Review on membrane technology applications in food and dairy processing, J. Appl. Biotechnol. Bioeng., 3 (2017) 399–407.
  3. T. Marino, F. Galiano, S. Simone, A. Figoli, DMSO EVOL™ as novel non-toxic solvent for polyethersulfone membrane preparation, Environ. Sci. Pollut. Res., 26 (2019) 14774–14785.
  4. K.M. Medeiros, E.M. Araujo, H.L. Lira, D.F. Lima, C.A.P Lima, G.G.C. Lima, Analysis of pore size of hybrid membranes for separation of microemulsions, Desal. Water Treat., 110 (2018) 65–75.
  5. M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, Springer, Netherlands, 1996.
  6. R.W. Baker, Membrane Technology and Applications, 2nd ed., John Wiley & Sons Ltd., Menlo Park, 2004.
  7. M. Razali, J.F. Kim, M. Attfield, P.M. Budd, E. Drioli, Y.M. Leeb, G. Szekely. Sustainable wastewater treatment and recycling in membrane manufacturing, Green Chem., 17 (2015) 5196–5205.
  8. C.H. Loh, B. Wu, L. Ge, C. Pan, R. Wang, High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: a feasibility study, Chemosphere, 194 (2018) 534–542.
  9. P. Dou, J. Song, S. Zhao, S. Xu, X. Li, T. He, Novel low cost hybrid extraction-distillation-reverse osmosis processfor complete removal of N,N-dimethylformamide from industrial wastewater, Process Saf. Environ. Prot., 130 (2019) 317–325.
  10. D. Bahnemann, Photocatalytic water treatment: solar energy applications, Sol. Energy, 77 (2004) 445–459.
  11. U.I. Gaya, A.H. Abdullah, M.Z. Hussein, Z. Zainal, Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder, Desalination, 263 (2010) 176–182.
  12. B. Kim, D. Kim, D. Cho, S. Cho, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere, 52 (2003) 277–281.
  13. L. Soares, A. Alves, Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis, Mater. Lett., 211 (2018) 339–342.
  14. D. Friedmann, A. Hakki, H. Kim, W. Choic, D. Bahnemann, Heterogeneous photocatalytic organic synthesis: state-of-theart and future perspectives, Green Chem., 18 (2016) 5391–5411.
  15. L. Chen, J. Tang, L.N. Song, P. Chen, J. He, C. Au, S. Yin, Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons, Appl. Catal., B, 242 (2019) 379–388.
  16. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
  17. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114 (2014) 9919–9986.
  18. M. Yasmina, K. Mourad, S.H. Mohammed, C. Khaoula, Treatment heterogeneous photocatalysis; factors influencing the photocatalytic degradation by TiO2, Energy Procedia, 50 (2014) 559–566.
  19. R.S.B. Ferreira, C.H.Ó. Pereira, E.A. Santos Filho, A.M.D. Leite, E.M. Araújo, H.L. Lira, Coagulation bath in the production of membranes of nanocomposites polyamide 6/Clay, Mater. Res., 20 (2017) 117–125.
  20. M.A.Y. Cervantes, J.L.S. Garcıa, M.I.L. Bastarrachea, S.D. Aranda, F.A.R. Trevino, M.A. Vega, Sulfonated polyphenylsulfone asymmetric membranes: effect of coagulation bath (acetic acid-NaHCO3/isopropanol) on morphology and antifouling properties, J. Appl. Polym. Sci., 134 (2016) 1–10.
  21. A.B. Sadi, R.K. Bilali, S.A. Abubshait, H. Kochkar, Low temperature design of titanium dioxide anatase materials decorated with cyanuric acid for formic acid photodegradation, J. Saudi Chem. Soc., 24 (2020) 351–363.
  22. R.B. Baird, A.D. Eaton, E.W. Rice, Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, Washington, DC, 2017.
  23. P. Ngaotrakanwiwat, P. Heawphet, P. Rangsunvigit, Enhancement of photoelectrochemical cathodic protection of copper in marine condition by Cu-doped TiO2, Catalysts, 10 (2020) 146–155.
  24. X. Yang, Y. Wang, L. Zhang, H. Fu, P. He, D. Han, T. Lawson, X. An, The use of tunable optical absorption plasmonic Au and Ag decorated TiO2 structures as efficient visible light photocatalysts, Catalysts, 10 (2020) 139–153.
  25. S. Joseph, B. Mathew, Microwave assisted biosynthesis of silver nanoparticles using the rhizome extract of alpinia galanga and evaluation of their catalytic and antimicrobial activities, J. Nanopart., 2014 (2014) 1–9.
  26. K. Dai, H. Chen, T. Peng, D. Ke, H. Yi, Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles, Chemosphere, 69 (2007) 1361–1367.
  27. J. Vakros, The influence of preparation method on the physicochemical characteristics and catalytic activity of Co/TiO2 catalysts, Catalysts, 10 (2020) 88–103.
  28. X. Qin, L. Jing, G. Tiana, Y. Qu, Y. Feng, Enhanced photocatalytic activity for degrading rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms, J. Hazard. Mater., 172 (2009) 1168–1174.
  29. V.G. Bessergenev, M.C. Mateus, A.M.B. Rego, M. Hantuschc, E. Burkel, An improvement of photocatalytic activity of TiO2 degussa P25 powder, Appl. Catal., A, 500 (2015) 42–50.
  30. M. Šihor, M. Reli, M. Vaštyl, K. Hrádková, L. Matejová, K. Kocí, Photocatalytic oxidation of methyl tert-butyl ether in presence of various phase compositions of TiO2, Catalysts, 10 (2020) 35–47.
  31. S.M. El-Sheikh, T.M. Khedr, A. Hakki, A.A. Ismail, W.A. Badawy, D.W. Bahnemann, Visible light activated carbon and nitrogen Co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen, Sep. Purif. Technol., 173 (2017) 258–268.
  32. S.M. Amorim, J. Suave, L. Andrade, A.M. Mendes, H.J. José, R.F.P.M. Moreira, Towards an efficient and durable self-cleaning acrylic paint containing mesoporous TiO2 microspheres, Prog. Org. Coat., 118 (2018) 48–56.
  33. A.D. Vishwanath, J.S. Shankar, N.M. Eknath, A.A. Eknath, K.N. Haribhau, Preparation, characterization and photocatalytic activities of TiO2 towards methyl red degradation, Orient. J. Chem., 33 (2017) 104–112.
  34. I.H. Choi, Y.C. Cho, G. Moon, H.N. Kang, Y.B. Oh, J.Y. Lee, J. Kang, Recent developments in the recycling of spent selective catalytic reduction catalyst in South Korea, Catalysts, 10 (2019) 182–203.
  35. D. Chen, L. Cao, F. Huang, P. Imperia, Y.B. Cheng, R.A. Caruso. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm), J. Am. Chem. Soc., 132 (2010) 4438–4444.
  36. C. Marinescu, A. Sofronia, C. Rusti, R. Piticescu, V. Badilita, E. Vasile, R. Baies, S. Tanasescu, DSC investigation of nanocrystalline TiO2 powder, J. Therm. Anal. Calorim., 103 (2011) 49–57.
  37. S.D. Delekar, H.M. Yadav, S.N. Achary, S.S. Meena, S.H. Pawar, Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles, Appl. Surf. Sci., 263 (2012) 536–545.
  38. J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F– Doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater., 14 (2002) 3808–3816.
  39. V.G. Gandhi, M.K. Mishra, M.S. Rao, A. Kumar, P.A. Joshi, D.O. Shah, Comparative study on nano-crystalline titanium dioxide catalyzed photocatalytic degradation of aromatic carboxylic acids in aqueous medium, J. Ind. Eng. Chem., 17 (2011) 331–339.
  40. S.J. Darzi, A.R. Mahjoub, A. Nilchi, Synthesis of spongelike mesoporous anatase and its photocatalytic properties, J. Chem. Chem. Eng., 29 (2010) 37–42.
  41. J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, J. Liu, Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis, Chem. Commun., 50 (2014) 13971–13974.
  42. A.G.S. Galdino, E.M. Oliveira, F.B.F. Monteiro, C.A.C. Zavaglia, Analysis of in vitro tests of the 50% HA-50% TiO2 composite manufactured using the polymeric sponge method, Ceramics, 60 (2014) 586–593.
  43. Z. Ma, X. Ma, X. Wang, N. Liu, X. Liu, B. Hou, Study on the photocathodic protection of Q235 steel by CdIn2S4 sensitized TiO2 composite in splash zone, Catalysts, 9 (2019) 1067–1080.
  44. A. Matioli, J. Miagava, D. Gouvêa, Modification of the stability of nanometric TiO2 polymorphs by excess SnO2 surface, Ceramics, 58 (2012) 53–57.
  45. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M.H. Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015) 1–36.
  46. R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li, J. Yang, D.W. Bahnemann, J.H. Pan, Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview, Catal. Today, 335 (2019) 78–90.
  47. S. Sohrabnezhad, Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst, Spectrochim. Acta, Part A, 81 (2011) 228–235.
  48. J. Dostanic, B. Grbic, N. Radic, S. Stojadinovic, R. Vasilic, Z. Vukovic, Preparation and photocatalyic properties of TiO2-P25 film prepared by spray pyrolysis method, Appl. Surf. Sci., 274 (2013) 321–327.
  49. B. Choudhury, A. Choudhury, Luminescence characteristics of cobalt doped TiO2 nanoparticles, J. Lumin., 132 (2012) 178–184.
  50. L.G. Devi, B.N. Murhty, S.G. Kumar, Photo catalytic degradation of imidachloprid under solar light using metal ion doped TiO2 nano particles: influence of oxidation state and electronic configuration of dopants, Catal. Lett., 130 (2009) 496–503.
  51. V.G. Gandhi, M.K. Mishra, P.A. Joshi, A study on deactivation and regeneration of titanium dioxide during photocatalytic degradation of phthalic acid, J. Ind. Eng. Chem., 18 (2012) 1902–1907.
  52. T. Venkov, K. Hadjiivanov, FTIR study of CO interaction with Cu/TiO2, Catal. Commun., 4 (2003) 209–213.
  53. P.C.S. Bezerra, R.P. Cavalcante, A. Garcia, H. Wender, M.A.U. Martines, G.A. Casagrande, J. Giménez, P. Marco, S.C. Oliveira, A. Machulek Jr., Synthesis, characterization, and photocatalytic activity of pure and N-, B-, or Ag-doped TiO2, J. Braz. Chem. Soc., 28 (2017) 1788–1802.
  54. G. Szekely, M.F. Jimenez-Solomon, P. Marchetti, J.F. Kim, A.G. Livingston, Sustainability assessment of organic solvent nanofiltration: from fabrication to application, Green Chem., 16, (2014) 4440–4473.
  55. F. Riboni, M.V. Dozzi, M.C. Paganini, E. Giamello, E. Selli, Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation, Catal. Today, 287 (2017) 176–181.
  56. P.L.K. Ardila, B.F. Silva, M. Spadoto, B.C.M. Rispoli, E.B. Azevedo, Which route to take for diclofenac removal from water: hydroxylation or direct photolysis?, J. Photochem. Photobiol., A, 382 (2019) 1–7.
  57. V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L. Palmisano, S. Yurdakal, Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis, J. Photochem. Photobiol., C, 13 (2012) 224–245.
  58. T. Ma, S. Garg, C.J. Miller, T.D. Waite, Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling, J. Colloid Interface Sci., 446 (2015) 366–372.
  59. N. Negishi, M. Sugasawa, Y. Miyazaki, Y. Hirami, S. Koura, Effect of dissolved silica on photocatalytic water purification with a TiO2 ceramic catalyst, Water Res., 150 (2019) 40–46.
  60. M. Hamandi, G. Berhault, C. Guillard, H. Kochkar, Influence of reduced graphene oxide on the synergism between rutile and anatase TiO2 particles in photocatalytic degradation of formic acid, Mol. Catal., 432 (2017) 125–130.
  61. W. El-Alami, D.G. Sousa, C.F. Rodríguez, O.G. Díaz, J.M.D. Rodríguez, M.E. Azzouzi, J. Araña, Efect of Ti-F surface interaction on the photocatalytic degradation of phenol, aniline and formic acid, J. Photochem. Photobiol., A, 348 (2017) 139–149.
  62. K.L. Miller, C.W. Lee, J.L. Falconer, J.W. Medlin, Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2, J. Catal., 275 (2010) 294–299.
  63. S. Papoutsakis, S.M. Cuevas, N. Gondrexon, S. Baup, S. Malato, C. Pulgarin, Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach, Ultrason. Sonochem., 22 (2015) 527–534.
  64. P. Anca, M.C. Anca, C. Nicula, L.M. Cozmuta, A. Jastrzębska, A. Olszyna, L. Baia, UV light-assisted degradation of methyl orange, methylene blue, phenol, salicylic acid, and rhodamine B: photolysis versus photocatalyis, Water Air Soil Pollut., 228 (2017) 28–41.
  65. T. Soltani, M.H. Entezari, Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticlesunder sunlight irradiation, J. Mol. Catal. A: Chem., 377 (2013) 197–203.
  66. M. Sanchez, M.J. Rivero, I. Ortiz, Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis, Appl. Catal., B, 101 (2011) 515–521.
  67. A.Turki, C. Guillard, F. Dappozze, G. Berhault, Z. Ksibi, H. Kochkar, Design of TiO2 nanomaterials for the photodegradation of formic acid - adsorption isotherms and kinetics study, J. Photochem. Photobiol., A, 279 (2014) 8–16.
  68. W.S. Lopes, M.G.C. Azevedo, V.D. Leite, J.T. Sousa, J.S. Buriti, Degradation of 17α-ethinylestradiol in water by heterogeneous photocatalysis, Environ. Water Interdiscip. J. Appl. Sci., 10 (2015) 728–736.
  69. S. Wang, F. Shiraishi, K. Nakano, A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution, Chem. Eng. J., 87 (2002) 261–271.
  70. J.F. Montoya, J.A. Velásquez, P. Salvador, The direct-indirect kinetic model in photocatalysis: a reanalysis of phenol and formic acid degradation rate dependence on photon flow and concentration in TiO2 aqueous dispersions, Appl. Catal., B, 88 (2009) 50–58.