References

  1. A.P. Abreu, B. Fernandes, A.A. Vicente, J. Teixeira, G. Dragone, Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source, Bioresour. Technol., 118 (2012) 61–66.
  2. H. Li, J. Zhang, L. Shen, Z. Chen, Y. Zhang, C. Zhang, Q. Li, Y. Wang, Production of polyhydroxyalkanoates by activated sludge: correlation with extracellular polymeric substances and characteristics of activated sludge, Chem. Eng. J., 361 (2019) 219–226.
  3. J. Kim, J.Y. Lee, C. Ahting, R. Johnstone, T. Lu, Growth of Chlorella vulgaris using sodium bicarbonate under no mixing condition, Asia-Pac. J. Chem. Eng., 9 (2014) 604–609.
  4. K. Mokashi, V. Shetty, S.A. George, G. Sibi, Sodium bicarbonate as inorganic carbon source for higher biomass and lipid production integrated carbon capture in Chlorella vulgaris, Achiev. Life Sci., 10 (2016) 111–117.
  5. Z. Tu, L. Liu, W. Lin, Z. Xie, J. Luo, Potential of using sodium bicarbonate as external carbon source to cultivate microalga in non-sterile condition, Bioresour. Technol., 266 (2018) 109–115.
  6. E.J. Lohman, R.D. Gardner, T. Pedersen, B.M. Peyton, K.E. Cooksey, R. Gerlach, Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris Luisa Gouveia, Biotechnol. Biofuels, 8 (2015) 1–13.
  7. C.R. Devgoswami, M.C. Kalita, J. Talukdar, R. Bora, P. Sharma, Studies on the growth behavior of chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas, Afr. J. Biotechnol., 10 (2011) 13128–13138.
  8. S.J. Sampathkumar, K.M. Gothandam, Cultivation and chemical composition of microalgae Chlorella vulgaris and its antibacterial activity against human pathogens, J. Aquacult. Mar. Biol., 5 (2017) 1–13.
  9. F.G. Acién, J.M. Fernández, J.J. Magán, E. Molina, Production cost of a real microalgae production plant and strategies to reduce it, Biotechnol. Adv., 30 (2012) 1344–1353.
  10. C. Candido, A.T. Lombardi, Growth of Chlorella vulgaris in treated conventional and biodigested vinasses, J. Appl. Phycol., 29 (2017) 45–53.
  11. C.E.R. Reis, B. Hu, Vinasse from sugarcane ethanol production: better treatment or better utilization?, Front. Energy Res., 5 (2017) 1–7.
  12. R.R. dos Santos, O. de Q.F. Araújo, J.L. de Medeiros, R.M. Chaloub, Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse, Bioresour. Technol., 204 (2016) 38–48.
  13. H. Santana, C.R. Cereijo, V.C. Teles, R.C. Nascimento, M.S. Fernandes, P. Brunale, R.C. Campanha, I.P. Soares, F.C.P. Silva, P.S. Sabaini, F.G. Siqueira, B.S.A.F. Brasil, Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization, Bioresour. Technol., 228 (2017) 133–140.
  14. R.G. de Melo, A.F. de Andrade, R.P. Bezerra, D.S. Correia, V.C. de Souza, A.C. Brasileiro-Vidal, D.A.V. Marques, A.L.F. Porto, Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products, Chemosphere, 204 (2018) 344–350.
  15. M.K. Lam, M.I. Yusoff, Y. Uemura, J.W. Lim, C.G. Khoo, K.T. Lee, H.C. Ong, Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies, Renewable Energy, 103 (2017) 197–207.
  16. A.S. Azmi, N.A.C. Aziz, N.I.M. Puad, A.A. Halim, F. Yusof, S. Yusup, Chlorella vulgaris logistic growth kinetics model in high concentrations of aqueous ammonia, IIUM Eng. J., 19 (2018) 1–9.
  17. L. Frunzo, R. Garra, A. Giusti, V. Luongo, Modeling biological systems with an improved fractional Gompertz law, Commun. Nonlinear Sci. Numer. Simul., 74 (2019) 260–267.
  18. M.M.A. Nur, H. Hadiyanto, Enhancement of chlorella vulgaris biomass cultivated in pome medium as biofuel feedstock under mixotrophic conditions, J. Eng. Technol. Sci., 47 (2015) 487–497.
  19. D. Vandamme, I. Foubert, I. Fraeye, K. Muylaert, Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation, Bioresour. Technol., 124 (2012) 508–511.
  20. P.J. Senior, G.A. Beech, G.A. Ritchie, E.A. Dawes, The role of oxygen limitation in the formation of poly-b-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii, Biochem. J., 128 (1972) 1193–1201.
  21. H. Hadiyanto, M.M. Azimatun Nur, G.D. Hartanto, Cultivation of Chlorella sp. as biofuel sources in palm oil mill effluent (POME), Int. J. Renewable Energy Dev., 1 (2012) 45–49.
  22. E. Koutra, C.N. Economou, P. Tsafrakidou, M. Kornaros, Bio-based products from microalgae cultivated in digestates, Trends Biotechnol., 36 (2018) 819–833.
  23. S. Gupta, R.A. Pandey, S.B. Pawar, Bioremediation of synthetic high–chemical oxygen demand wastewater using microalgal species Chlorella pyrenoidosa, Biorem. J., 21 (2017) 38–51.
  24. G. Markou, D. Vandamme, K. Muylaert, Microalgal and cyanobacterial cultivation: the supply of nutrients, Water Res., 65 (2014) 186–202.
  25. J. Lowrey, M.S. Brooks, P.J. McGinn, Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review, J. Appl. Phycol., 27 (2015) 1485–1498.
  26. H. Lu, G. Zhang, T. Wan, Y. Lu, Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: different metabolic pathways, Bioresour. Technol., 102 (2011) 9503–9508.
  27. D. Morales-Sánchez, O.A. Martinez-Rodriguez, J. Kyndt, A. Martinez, Heterotrophic growth of microalgae: metabolic aspects, World J. Microbiol. Biotechnol., 31 (2015) 1–9.
  28. S. Ansari, T. Fatma, Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization, PLoS One, 11 (2016) 1–20.
  29. S. Samantaray, N. Mallick, Impact of various stress conditions on poly-β-hydroxybutyrate (PHB) accumulation in Aulosira fertilissima CCC 444, Curr. Biotechnol., 4 (2015) 366–372.
  30. L. Sharma, N. Mallick, Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources, Bioresour. Technol., 96 (2005) 1304–1310.
  31. D. Kamravamanesh, M. Lackner, C. Herwig, Bioprocess engineering aspects of sustainable polyhydroxyalkanoate production in cyanobacteria, Bioengineering, 5 (2018) 1–18.
  32. A.P.A. Cassuriaga, B.C.B. Freitas, M.G. Morais, J.A.V. Costa, Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses, Bioresour. Technol., 265 (2018) 456–463.
  33. D.M. Arias, E. Uggetti, M.J. García-Galán, J. García, Production of polyhydroxybutyrates and carbohydrates in a mixed cyanobacterial culture: effect of nutrients limitation and photoperiods, New Biotechnol., 42 (2018) 1–11.
  34. S. Balaji, K. Gopi, B. Muthuvelan, A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics, Algal Res., 2 (2013) 278–285.
  35. E. Markl, H. Grunbichler, M. Lackner, PHB - bio based and biodegradable replacement for PP: a review, Novel Tech. Nutr. Food Sci., 2 (2018) 1–4.
  36. Ichsan, H. Hadiyanto, R. Hendroko, Integrated biogasmicroalgae from waste waters as the potential biorefinery sources in Indonesia, Energy Procedia, 47 (2014) 143–148.