References
- A.P. Abreu, B. Fernandes, A.A. Vicente, J. Teixeira, G. Dragone,
Mixotrophic cultivation of Chlorella vulgaris using industrial
dairy waste as organic carbon source, Bioresour. Technol., 118
(2012) 61–66.
- H. Li, J. Zhang, L. Shen, Z. Chen, Y. Zhang, C. Zhang, Q. Li,
Y. Wang, Production of polyhydroxyalkanoates by activated
sludge: correlation with extracellular polymeric substances and
characteristics of activated sludge, Chem. Eng. J., 361 (2019)
219–226.
- J. Kim, J.Y. Lee, C. Ahting, R. Johnstone, T. Lu, Growth of
Chlorella vulgaris using sodium bicarbonate under no mixing
condition, Asia-Pac. J. Chem. Eng., 9 (2014) 604–609.
- K. Mokashi, V. Shetty, S.A. George, G. Sibi, Sodium bicarbonate
as inorganic carbon source for higher biomass and lipid
production integrated carbon capture in Chlorella vulgaris,
Achiev. Life Sci., 10 (2016) 111–117.
- Z. Tu, L. Liu, W. Lin, Z. Xie, J. Luo, Potential of using
sodium bicarbonate as external carbon source to cultivate
microalga in non-sterile condition, Bioresour. Technol.,
266 (2018) 109–115.
- E.J. Lohman, R.D. Gardner, T. Pedersen, B.M. Peyton,
K.E. Cooksey, R. Gerlach, Optimized inorganic carbon regime
for enhanced growth and lipid accumulation in Chlorella
vulgaris Luisa Gouveia, Biotechnol. Biofuels, 8 (2015) 1–13.
- C.R. Devgoswami, M.C. Kalita, J. Talukdar, R. Bora, P. Sharma,
Studies on the growth behavior of chlorella, Haematococcus and
Scenedesmus sp. in culture media with different concentrations of
sodium bicarbonate and carbon dioxide gas, Afr. J. Biotechnol.,
10 (2011) 13128–13138.
- S.J. Sampathkumar, K.M. Gothandam, Cultivation and chemical
composition of microalgae Chlorella vulgaris and its antibacterial
activity against human pathogens, J. Aquacult. Mar. Biol.,
5 (2017) 1–13.
- F.G. Acién, J.M. Fernández, J.J. Magán, E. Molina, Production
cost of a real microalgae production plant and strategies to
reduce it, Biotechnol. Adv., 30 (2012) 1344–1353.
- C. Candido, A.T. Lombardi, Growth of Chlorella vulgaris in
treated conventional and biodigested vinasses, J. Appl. Phycol.,
29 (2017) 45–53.
- C.E.R. Reis, B. Hu, Vinasse from sugarcane ethanol production:
better treatment or better utilization?, Front. Energy Res.,
5 (2017) 1–7.
- R.R. dos Santos, O. de Q.F. Araújo, J.L. de Medeiros,
R.M. Chaloub, Cultivation of Spirulina maxima in medium
supplemented with sugarcane vinasse, Bioresour. Technol.,
204 (2016) 38–48.
- H. Santana, C.R. Cereijo, V.C. Teles, R.C. Nascimento,
M.S. Fernandes, P. Brunale, R.C. Campanha, I.P. Soares,
F.C.P. Silva, P.S. Sabaini, F.G. Siqueira, B.S.A.F. Brasil,
Microalgae cultivation in sugarcane vinasse: selection, growth
and biochemical characterization, Bioresour. Technol., 228
(2017) 133–140.
- R.G. de Melo, A.F. de Andrade, R.P. Bezerra, D.S. Correia,
V.C. de Souza, A.C. Brasileiro-Vidal, D.A.V. Marques,
A.L.F. Porto, Chlorella vulgaris mixotrophic growth enhanced
biomass productivity and reduced toxicity from agro-industrial
by-products, Chemosphere, 204 (2018) 344–350.
- M.K. Lam, M.I. Yusoff, Y. Uemura, J.W. Lim, C.G. Khoo,
K.T. Lee, H.C. Ong, Cultivation of Chlorella vulgaris using
nutrients source from domestic wastewater for biodiesel
production: growth condition and kinetic studies, Renewable
Energy, 103 (2017) 197–207.
- A.S. Azmi, N.A.C. Aziz, N.I.M. Puad, A.A. Halim, F. Yusof,
S. Yusup, Chlorella vulgaris logistic growth kinetics model
in high concentrations of aqueous ammonia, IIUM Eng. J.,
19 (2018) 1–9.
- L. Frunzo, R. Garra, A. Giusti, V. Luongo, Modeling biological
systems with an improved fractional Gompertz law, Commun.
Nonlinear Sci. Numer. Simul., 74 (2019) 260–267.
- M.M.A. Nur, H. Hadiyanto, Enhancement of chlorella vulgaris biomass cultivated in pome medium as biofuel feedstock under
mixotrophic conditions, J. Eng. Technol. Sci., 47 (2015) 487–497.
- D. Vandamme, I. Foubert, I. Fraeye, K. Muylaert, Influence of
organic matter generated by Chlorella vulgaris on five different
modes of flocculation, Bioresour. Technol., 124 (2012) 508–511.
- P.J. Senior, G.A. Beech, G.A. Ritchie, E.A. Dawes, The role of
oxygen limitation in the formation of poly-b-hydroxybutyrate
during batch and continuous culture of Azotobacter beijerinckii,
Biochem. J., 128 (1972) 1193–1201.
- H. Hadiyanto, M.M. Azimatun Nur, G.D. Hartanto, Cultivation
of Chlorella sp. as biofuel sources in palm oil mill effluent
(POME), Int. J. Renewable Energy Dev., 1 (2012) 45–49.
- E. Koutra, C.N. Economou, P. Tsafrakidou, M. Kornaros,
Bio-based products from microalgae cultivated in digestates,
Trends Biotechnol., 36 (2018) 819–833.
- S. Gupta, R.A. Pandey, S.B. Pawar, Bioremediation of synthetic
high–chemical oxygen demand wastewater using microalgal
species Chlorella pyrenoidosa, Biorem. J., 21 (2017) 38–51.
- G. Markou, D. Vandamme, K. Muylaert, Microalgal and
cyanobacterial cultivation: the supply of nutrients, Water Res.,
65 (2014) 186–202.
- J. Lowrey, M.S. Brooks, P.J. McGinn, Heterotrophic and
mixotrophic cultivation of microalgae for biodiesel production
in agricultural wastewaters and associated challenges—a
critical review, J. Appl. Phycol., 27 (2015) 1485–1498.
- H. Lu, G. Zhang, T. Wan, Y. Lu, Influences of light and
oxygen conditions on photosynthetic bacteria macromolecule
degradation: different metabolic pathways, Bioresour. Technol.,
102 (2011) 9503–9508.
- D. Morales-Sánchez, O.A. Martinez-Rodriguez, J. Kyndt,
A. Martinez, Heterotrophic growth of microalgae: metabolic
aspects, World J. Microbiol. Biotechnol., 31 (2015) 1–9.
- S. Ansari, T. Fatma, Cyanobacterial polyhydroxybutyrate
(PHB): screening, optimization and characterization, PLoS One,
11 (2016) 1–20.
- S. Samantaray, N. Mallick, Impact of various stress conditions
on poly-β-hydroxybutyrate (PHB) accumulation in Aulosira
fertilissima CCC 444, Curr. Biotechnol., 4 (2015) 366–372.
- L. Sharma, N. Mallick, Accumulation of poly-β-hydroxybutyrate
in Nostoc muscorum: regulation by pH, light-dark cycles, N and
P status and carbon sources, Bioresour. Technol., 96 (2005)
1304–1310.
- D. Kamravamanesh, M. Lackner, C. Herwig, Bioprocess
engineering aspects of sustainable polyhydroxyalkanoate
production in cyanobacteria, Bioengineering, 5 (2018) 1–18.
- A.P.A. Cassuriaga, B.C.B. Freitas, M.G. Morais, J.A.V. Costa,
Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses, Bioresour. Technol., 265 (2018) 456–463.
- D.M. Arias, E. Uggetti, M.J. García-Galán, J. García, Production
of polyhydroxybutyrates and carbohydrates in a mixed
cyanobacterial culture: effect of nutrients limitation and
photoperiods, New Biotechnol., 42 (2018) 1–11.
- S. Balaji, K. Gopi, B. Muthuvelan, A review on production of
poly β hydroxybutyrates from cyanobacteria for the production
of bio plastics, Algal Res., 2 (2013) 278–285.
- E. Markl, H. Grunbichler, M. Lackner, PHB - bio based and
biodegradable replacement for PP: a review, Novel Tech. Nutr.
Food Sci., 2 (2018) 1–4.
- Ichsan, H. Hadiyanto, R. Hendroko, Integrated biogasmicroalgae
from waste waters as the potential biorefinery
sources in Indonesia, Energy Procedia, 47 (2014) 143–148.