References

  1. K. Mohanty, J.T. Naidu, B. Meikap, M. Biswas, Removal of crystal violet from wastewater by activated carbons prepared from rice husk, Ind. Eng. Res., 45 (2006) 5165–5171.
  2. F. Nasiri, M. Azad Ghaedi, K. Dashtian, S. Hajati, V. Pezeshkpour, Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: taguchi optimization, Ultrason. Sonochem., 31 (2016) 383–393.
  3. A. Kakar, E. Jayamani, M.K.B. Bakri, M.R. Rahman, Chapter 8 - Biomedical and Packaging Application of Silica and Various Clay Dispersed Nanocomposites, M.R. Rahman, Ed., Silica and Clay Dispersed Polymer Nanocomposites Preparation, Properties and Applications, Silica and Clay Dispersed Polymer Nanocomposites, Woodhead Publishing, 2018, pp. 109–136.
  4. A. Kausar, K. Naeem, T. Hussain, Z.H. Nazli, H.N. Bhattic, F. Jubeen, A. Nazi, M. Iqbal, Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: comparison of linear and non-linear regression methods, J. Mater. Res. Technol., 8 (2019) 1161–1174.
  5. S. Mellouk, S. Cherifi, M. Sassi, K. Marouf-Khelifa, A. Bengueddach, J. Schott, A. Khelifa, Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions, Appl. Clay Sci., 44 (2009) 230–236.
  6. N. Salahuddin, S. Abo-El-Enein, A.A Selim, O. Salah El-Dien, Synthesis and characterization of polyurethane/organomontmorillonite nanocomposites, Appl. Clay Sci., 47 (2010) 242–248.
  7. F. Tezcan, E. Günister, G. Özen, F.B. Erim, Biocomposite films based on alginate and organically modified clay, Int. J. Biol. Macromol., 50 (2012) 1165–1168.
  8. E.S. Goda, M.A. Gab-Allah, B.S. Singu, K.R. Yoon, Halloysite nanotubes based electrochemical sensors: a review, Microchem. J., 147 (2019) 1083–1096.
  9. K. Mehdi, S. Bendenia, G.L. Lecomte-Nana, I. Batonneau-Gener, F. Rossignol, K. Marouf-Khelifa, A. Khelifa, A new approach about the intercalation of hexadecyltrimethylammonium into halloysite: preparation, characterization, and mechanism, Chem. Pap., 73 (2019) 131–139.
  10. E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux, Halloysite clay minerals – a review, Clay Miner., 40 (2005) 383-426.
  11. F. Bessaha, K. Marouf-Khelifa, I. Batonneau-Gener, A. Khelifa, Characterization and application of heat-treated and acid-leached halloysites in the removal of malachite green: adsorption, desorption, and regeneration studies, Desal. Water Treat., 57 (2016) 14609–14621.
  12. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungl. Svenska Vetenskapsad, Handl., 24 (1898) 1–39.
  13. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  14. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31-59.
  15. I. Langmuir, Adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  16. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  17. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1033.
  18. A. Wiewióra, G.W. Brindley, Potassium Acetate Intercalation in Kaolinites and Its Removal: Effect Of Material Characteristics, L. Heller, Ed., Proceedings of the International Clay Conference Tokyo, Israel University Press, Jerusalem, 1969, pp. 723–733.
  19. J.A. Mbey, F. Thomas, C.J. Ngally Sabouang, S. Liboum, D. Njopwouo, An insight on the weakening of the interlayer bonds in a Cameroonian kaolinite through DMSO intercalation, Appl. Clay Sci., 83 (2013) 327–335.
  20. H. Cheng, Q. Liu, J. Yang, S. Ma, R.L. Frost, The thermal behavior of kaolinite intercalation complexes – a review, Thermochim. Acta, 545 (2012) 1–13.
  21. M. Tharmavaram, G. Pandey, D. Rawtani, Surface modified halloysite nanotubes: a flexible interface for biological, environmental and catalytic applications, Adv. Colloid Interface Sci., 261 (2018) 82–101.
  22. A. Masoumi, K. Hemmati, M. Ghaemy, Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water, Chemosphere, 146 (2016) 253–262.
  23. L.M. Cotoruelo, M.D. Marques, F.J. Dıaz, J. Rodrıguez-Mirasol, J.J. Rodrıguez, T. Cordero, Lignin-based activated carbons as adsorbents for crystal violet removal from aqueous solutions, Environ. Prog. Sustainable Energy, 31 (2012) 386–396.
  24. I. Loulidi, F. Boukhlifi, M. Ouchabi, A. Amar, M. Jabri, A. Kali, S. Chraibi, C. Hadey, F. Aziz, Adsorption of crystal violet onto an agricultural waste residue: kinetics, isotherm, thermodynamics, and mechanism of adsorption, Sci. World J., 2020 (2020), doi: 10.1155/2020/5873521.
  25. D. Tan, P. Yuan, D. Liu, P. Du, Surface Modifications of Halloysite, P. Yuan, A. Thill, F. Bergaya, Eds., Nanosized Tubular Clay Minerals - Halloysite and Imogolite, Elsevier, 2016, pp. 167–201.
  26. K. Belkassa, F. Bessaha, K. Marouf-Khelifa, I. Batonneau-Gener, I.D. Comparot, A. Khelifa, Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite, Colloids Surf., A, 421 (2013) 26–33.
  27. F. Bessaha, N. Mahrez, S. Bendenia, F. Kasmi, K. Marouf-Khelifa, A. Khelifa, Characterization and spectroscopic study of a heat-treated and acid-leached halloysite used in Congo red adsorption, Int. J. Intell. Eng. Syst., 10 (2017) 272–279.
  28. G. Kiani, M. Dostali, A. Rostami, A.R. Khataee, Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes, Appl. Clay Sci., 54 (2011) 34–39.
  29. A. Wscislo, J. Matusik, Halloysite-based material with improved cation sorption properties, Geol. Geophys. Environ., 38 (2012) 553-554.
  30. P. Maziarz, J. Matusik, The kinetics of heavy metals immobilization by modified halloysite, Geol. Geophys. Environ., 40 (2014) 108–109.
  31. M.K. Satapathy, P. Das, Optimization of crystal violet dye removal using novel soil-silver nanocomposite as nanoadsorbent using response surface methodology, J. Environ. Chem. Eng., 2 (2014) 708–714.
  32. S.R. Shirsath, A.P. Patil, B.A. Bhanvase, S.H. Sonawane, Ultrasonically prepared poly (acrylamide)-kaolin composite hydrogel for removal of crystal violet from wastewater, J. Environ. Chem. Eng., 3 (2015) 1152–1162.
  33. S. Li, Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly (acrylic acid-acrylamide-methacrylate) and amylose, Bioresour. Technol., 101 (2010) 2197–2202.
  34. B.K. Nandi, A. Goswami, M.K. Purkait, Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies, Appl. Clay Sci., 42 (2009) 583–590.
  35. S. Kaur, S. Rani, R.K. Mahajan, Adsorptive removal of dye crystal violet onto low-cost carbon produced from eichhornia plant: kinetic, equilibrium, and thermodynamic studies, Desal. Water Treat., 53 (2013) 543–556.
  36. K.P. Singh, S. Gupta, AK. Singh, S. Sinha, Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach, J. Hazard. Mater., 186 (2011) 1462–1473.
  37. F. Bessaha, N. Mahrez, K. Marouf‑Khelifa, A. Çoruh, A. Khelifa, Removal of Congo red by thermally and chemically modified halloysite: equilibrium, FTIR spectroscopy, and mechanism studies, Int. J. Environ. Sci. Technol., 16 (2019) 4253–4260.
  38. S. Zhang, Q. Liu, H. Cheng, F. Zeng, Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide, Appl. Surf. Sci., 331 (2015) 234–240.
  39. K.S. Abou-El-Sherbini, A.M. Elzahany, Eman, A. Wahba, M.A. Drweesh, S.N.S. Youssef, Evaluation of some intercalation methods of dimethylsulphoxide onto HCl-treated and untreated Egyptian kaolinite, Appl. Clay Sci., 137 (2017) 33–42.
  40. S.G. Nasab, A. Semnani, A. Teimouri, M.J. Yazd, T.M. Isfahani, S. Habibollahi, Decolorization of crystal violet from aqueous solutions by a novel adsorbent chitosan/nanodiopside using response surface methodology and artificial neural networkgenetic algorithm, Int. J. Biol. Macromol., 124 (2018) 429–443.
  41. R. Zhua, Q. Chen, H. Liu, F. Ge, L. Zhu, J. Zhu, H. He, Montmorillonite as a multifunctional adsorbent can simultaneously remove crystal violet, cetyltrimethylammonium, and 2-naphthol from water, Appl. Clay Sci., 88 (2014) 33–38.
  42. B.D. Mistry, A Handbook of Spectroscopic Data Chemistry (UV, JR, PMR, JJCNMR and Mass Spectroscopy), Oxford Book Company, Jaipur, 2009.
  43. Y. Marcus, The Properties of Solvents, Wiley Series in Solution Chemistry, Wiley, Chichester, 1998.
  44. D.M. Porter, W.S. Brey, Nuclear magnetic resonance studies of hydrogen bonding. II. The pyrrole-dimethyl sulfoxide system, J. Phys. Chem., 72 (1968) 650–654.
  45. X.F. Tan, Y.G. Liu, Y.L. Gu, S.B. Liu, G.M. Zeng, X. Cai, X.J. Hu, H. Wang, S.M. Liu, L.H. Jian, Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): characterization and application for crystal violet removal, J. Environ. Manage., 184 (2016) 85–93.