References
- S. Kasavan, A.F. Mohamed, S. Abdul Halim, Drivers of food
waste generation: case study of island-based hotels in Langkawi,
Malaysia, Waste Manage., 91 (2019) 72–79.
- S.K. Pramanik, F.B. Suja, S.M. Zain, B.K. Pramanik, The
anaerobic digestion process of biogas production from food
waste: prospects and constraints, Bioresour. Technol. Rep.,
8 (2019) 1–15, doi: 10.1016/j.biteb.2019.100310.
- S.K. Pramanik, F.B. Suja, M. Porhemmat, B.K. Pramanik,
Performance and kinetic model of a single-stage anaerobic
digestion system operated at different successive operating
stages for the treatment of food waste, Processes, 7 (2019) 1–16,
doi: 10.3390/pr7090600.
- S.S. Khamis, H. Purwanto, A. Naili Rozhan, M. Abd Rahman,
H. Mohd Salleh, Characterization of municipal solid waste in
Malaysia for energy recovery, IOP Conf. Ser.: Earth Environ.
Sci., 264 (2019) 1–6, doi: 10.1088/1755-1315/264/1/012003.
- P.C. Slorach, H.K. Jeswani, R. Cuéllar-Franca, A. Azapagic,
Environmental sustainability of anaerobic digestion of
household food waste, J. Environ. Manage., 236 (2019) 798–814.
- L.A. Manaf, M.A.A. Samah, N.I.M. Zukki, Municipal solid
waste management in Malaysia: practices and challenges,
Waste Manage., 29 (2009) 2902–2906.
- Y. Meng, S. Li, H. Yuan, D. Zou, Y. Liu, B. Zhu, A. Chufo,
M. Jaffar, X. Li, Evaluating biomethane production from
anaerobic mono- and co-digestion of food waste and floatable
oil (FO) skimmed from food waste, Bioresour. Technol.,
185 (2015) 7–13.
- S.K. Cho, W.T. Im, D.H. Kim, M.H. Kim, H.S. Shin, S.E. Oh, Dry
anaerobic digestion of food waste under mesophilic conditions:
performance and methanogenic community analysis, Bioresour.
Technol., 131 (2013) 210–217.
- S.K. Pramanik, F.B. Suja, B.K. Pramanik, Opportunity of biogas
production from solid organic wastes through anaerobic
digestion, E3S Web Conf., 65 (2018) 1–10.
- S.K. Pramanik, F.B. Suja, B.K. Pramanik, Effects of hydraulic
retention time on the process performance and microbial
community structure of an anaerobic single-stage semi-pilot
scale reactor for the treatment of food waste, Int. Biodeterior.
Biodegrad., 152 (2020) 1–11, doi: 10.1016/j.ibiod.2020.104999.
- S. Supaphol, S.N. Jenkins, P. Intomo, I.S. Waite, A.G. O’Donnell,
Microbial community dynamics in mesophilic anaerobic
co-digestion of mixed waste, Bioresour. Technol., 102 (2011)
4021–4027.
- L. Li, Q. He, Y. Wei, Q. He, X. Peng, Early warning indicators for
monitoring the process failure of anaerobic digestion system of
food waste, Bioresour. Technol., 171 (2014) 491–494.
- L. Li, Q. He, Y. Ma, X. Wang, X. Peng, Dynamics of microbial
community in a mesophilic anaerobic digester treating food
waste: relationship between community structure and process
stability, Bioresour. Technol., 189 (2015) 113–120.
- L. Li, Q. He, Y. Ma, X. Wang, X. Peng, A mesophilic anaerobic
digester for treating food waste: process stability and microbial
community analysis using pyrosequencing, Microb. Cell Fact.,
15 (2016) 1–11, doi: 10.1186/s12934-016-0466-y.
- V. Razaviarani, I.D. Buchanan, Reactor performance and
microbial community dynamics during anaerobic co-digestion
of municipal wastewater sludge with restaurant grease waste
at steady state and overloading stages, Bioresour. Technol.,
172 (2014) 232–240.
- R.D.A. Cayetano, J.H. Park, S. Kang, S.H. Kim, Food waste
treatment in an anaerobic dynamic membrane bioreactor
(AnDMBR): performance monitoring and microbial community
analysis, Bioresour. Technol., 280 (2019) 158–164.
- N. Sahu, G. Sharma, B. Chandrashekhar, N.B. Jadeja,
A. Kapley, R.A. Pandey, A. Sharma, Performance evaluation
of methanogenic digester using kitchen waste for validation
of optimized hydrolysis conditions for reduction in ammonia
accumulation, Renewable Energy, 139 (2019) 110–119.
- H. Chen, W. Wang, L. Xue, C. Chen, G. Liu, R. Zhang, Effects
of ammonia on anaerobic digestion of food waste: process
performance and microbial community, Energy Fuels, 30 (2016)
5749–5757.
- R. Ganesh, M. Torrijos, P. Sousbie, A. Lugardon, J.P. Steyer,
J.P. Delgenes, Single-phase and two-phase anaerobic digestion
of fruit and vegetable waste: comparison of start-up, reactor
stability and process performance, Waste Manage., 34 (2014)
875–885.
- C. Gou, Z. Yang, J. Huang, H. Wang, H. Xu, L. Wang, Effects
of temperature and organic loading rate on the performance
and microbial community of anaerobic co-digestion of waste
activated sludge and food waste, Chemosphere, 105 (2014)
146–151.
- Y. Hu, T. Kobayashi, W. Qi, H. Oshibe, K.Q. Xu, Effect of
temperature and organic loading rate on siphon-driven selfagitated
anaerobic digestion performance for food waste
treatment, Waste Manage., 74 (2018) 150–157.
- J.K. Kim, B.R. Oh, Y.N. Chun, S.W. Kim, Effects of temperature
and hydraulic retention time on anaerobic digestion of food
waste, J. Biosci. Bioeng., 102 (2006) 328–332.
- A. Schievano, A. Tenca, B. Scaglia, G. Merlino, A. Rizzi, D. Da,
R. Oberti, F. Adani, R. Group, P. Vegetale, V. Celoria, I. Agraria,
V. Celoria, Two-stage vs. single-stage thermophilic anaerobic
digestion: comparison of energy production and biodegradation
efficiencies, Environ. Sci. Technol., 46 (2012) 8502–8510.
- G. Kumar, P. Sivagurunathan, J.H. Park, S.H. Kim, Anaerobic
digestion of food waste to methane at various organic loading
rates (OLRs) and hydraulic retention times (HRTs): thermophilic
vs. mesophilic regimes, Environ. Eng. Res., 21 (2016) 69–73.
- X. Shi, X. Guo, J. Zuo, Y. Wang, M. Zhang, A comparative
study of thermophilic and mesophilic anaerobic co-digestion
of food waste and wheat straw: process stability and microbial
community structure shifts, Waste Manage., 75 (2018) 261–269.
- B. Xiao, Y. Qin, W. Zhang, J. Wu, H. Qiang, J. Liu, Y.-Y. Li,
Temperature-phased anaerobic digestion of food waste: a
comparison with single-stage digestions based on performance
and energy balance, Bioresour. Technol., 249 (2018) 826–834.
- J. Zhang, K.C. Loh, W. Li, J.W. Lim, Y. Dai, Y.W. Tong, Threestage
anaerobic digester for food waste, Appl. Energy, 194 (2017)
287–295.
- K. Svensson, L. Paruch, J.C. Gaby, R. Linjordet, Feeding
frequency influences process performance and microbial
community composition in anaerobic digesters treating steam
exploded food waste, Bioresour. Technol., 269 (2018) 276–284.
- J. De Vrieze, M.E.R. Christiaens, D. Walraedt, A. Devooght,
U.Z. Ijaz, N. Boon, Microbial community redundancy in
anaerobic digestion drives process recovery after salinity
exposure, Water Res., 111 (2017) 109–117.
- D.G. Mulat, H.F. Jacobi, A. Feilberg, A.P.S. Adamsen,
H.-H. Richnow, M. Nikolauszd, Changing feeding regimes
to demonstrate flexible biogas production : effects on process
performance, microbial community structure, and methanogenesis
pathways, Appl. Environ. Microbiol., 82 (2016)
438–449.
- R.M. Ziels, D.A.C. Beck, H.D. Stensel, Long-chain fatty acid
feeding frequency in anaerobic codigestion impacts syntrophic
community structure and biokinetics, Water Res., 117 (2017)
218–229.
- Z. Lv, A.F. Leite, H. Harms, H.H. Richnow, J. Liebetrau,
M. Nikolausz, Influences of the substrate feeding regime
on methanogenic activity in biogas reactors approached by
molecular and stable isotope methods, Anaerobe, 29 (2014)
91–99.
- A. Conklin, H.D. Stensel, J. Ferguson, Growth kinetics and
competition between methanosarcina and methanosaeta in
mesophilic anaerobic digestion, Water Environ. Res., 78 (2006)
486–496.
- D. Krishna, A.S. Kalamdhad, Pre-treatment and anaerobic
digestion of food waste for high rate methane production – a
review, J. Environ. Chem. Eng., 2 (2014) 1821–1830.
- B. Deepanraj, V. Sivasubramanian, S. Jayaraj, Experimental and
kinetic study on anaerobic digestion of food waste: the effect of
total solids and pH, J. Renewable Sustainable Energy, 7 (2015)
1–13, doi: 10.1063/1.4935559.
- L. Li, Q. He, X. Zhao, D. Wu, X. Wang, X. Peng, Anaerobic
digestion of food waste: correlation of kinetic parameters with
operational conditions and process performance, Biochem. Eng.
J., 130 (2018) 1–9.
- Y. Zhang, Z. Yang, R. Xu, Y. Xiang, M. Jia, J. Hu, Y. Zheng,
W.P. Xiong, J. Cao, Enhanced mesophilic anaerobic digestion
of waste sludge with the iron nanoparticles addition and
kinetic analysis, Sci. Total Environ., 683 (2019) 124–133.
- R. Bala, G.K. Gupta, B.V. Dasgupta, M.K. Mondal, Pretreatment
optimisation and kinetics of batch anaerobic digestion of
liquidised OFMSW treated with NaOH: models verification
with experimental data, J. Environ. Manage., 237 (2019) 313–321.
- D.D. Nguyen, B.H. Jeon, J.H. Jeung, E.R. Rene, J.R. Banu,
B. Ravindran, C.M. Vu, H.H. Ngo, W. Guo, S.W. Chang,
Thermophilic anaerobic digestion of model organic wastes:
evaluation of biomethane production and multiple kinetic
models analysis, Bioresour. Technol., 280 (2019) 269–276.
- Y. Li, Y. Jin, H. Li, A. Borrion, Z. Yu, J. Li, Kinetic studies on
organic degradation and its impacts on improving methane
production during anaerobic digestion of food waste, Appl.
Energy, 213 (2018) 136–147.
- EPA, Regulatory Monitoring and Testing, Water and Wastewater
Sampling, Environment Protection Authority, Adelaide, 2007.
- APHA, Standard Methods for the Examination of Water and
Wastewater, American Public Health Association, Washington
DC, 2005.
- AOAC, Method 991.36, 981.10, 923.03 and 950.46, Official
Methods of Analysis, 16th ed., Association of Official Analytical
Chemists, Washington, DC, 1995.
- A. Donoso-Bravo, S.I. Pérez-Elvira, F. Fdz-Polanco, Application
of simplified models for anaerobic biodegradability tests.
Evaluation of pre-treatment processes, Chem. Eng. J., 160 (2010)
607–614.
- G.K. Kafle, L. Chen, Comparison on batch anaerobic digestion of
five different livestock manures and prediction of biochemical
methane potential (BMP) using different statistical models,
Waste Manage., 48 (2016) 492–502.
- Z. Zahan, M.Z. Othman, T.H. Muster, Anaerobic digestion/
co-digestion kinetic potentials of different agro-industrial
wastes: a comparative batch study for C/N optimisation, Waste
Manage., 71 (2018) 663–674.
- C. Zhang, H. Su, J. Baeyens, T. Tan, Reviewing the anaerobic
digestion of food waste for biogas production, Renewable
Sustainable Energy Rev., 38 (2014) 383–392.
- Y. Arij, S. Fatihah, A.R. Rakmi, Performance of pilot scale
anaerobic biofilm digester (ABD) for the treatment of leachate
from a municipal waste transfer station, Bioresour. Technol.,
260 (2018) 213–220.
- C. Liu, W. Wang, N. Anwar, Z. Ma, G. Liu, R. Zhang, Effect
of organic loading rate on anaerobic digestion of food waste
under mesophilic and thermophilic conditions, Energy Fuels,
31 (2017) 2976–2984.
- T. Kobayashi, Y.Y. Li, Performance and characterization of a
newly developed self-agitated anaerobic reactor with biological
desulfurization, Bioresour. Technol., 102 (2011) 5580–5588.
- J.H. Park, G. Kumar, Y.M. Yun, J.C. Kwon, S.H. Kim, Effect of
feeding mode and dilution on the performance and microbial
community population in anaerobic digestion of food waste,
Bioresour. Technol., 248 (2018) 134–140.
- X.-S. Shi, J.-J. Dong, J.-H. Yu, H. Yin, S.-M. Hu, S.-X. Huang,
X.-Z. Yuan, Effect of hydraulic retention time on anaerobic
digestion of wheat straw in the semicontinuous continuous
stirred-tank reactors, Biomed Res. Int., 2017 (2017) 1–6, doi:
10.1155/2017/2457805.
- M. Jabeen, Zeshan, S. Yousaf, M.R. Haider, R.N. Malik, Highsolids
anaerobic co-digestion of food waste and rice husk at
different organic loading rates, Int. Biodeterior. Biodegrad.,
102 (2015) 149–153.
- J. De Vrieze, W. Verstraete, N. Boon, Repeated pulse feeding
induces functional stability in anaerobic digestion, Microb.
Biotechnol., 6 (2013) 414–424.
- Y. Li, L. Feng, R. Zhang, Y. He, X. Liu, X. Xiao, X. Ma, C. Chen,
G. Liu, Influence of inoculum source and pre-incubation on biomethane
potential of chicken manure and corn stover, Appl.
Biochem. Biotechnol., 171 (2013) 117–127.
- C. Mao, X. Wang, J. Xi, Y. Feng, G. Ren, Linkage of kinetic
parameters with process parameters and operational conditions
during anaerobic digestion, Energy, 135 (2017) 352–360.