References
- C.B. Vidal, A.V. Feitosa, G.P. Pessoa, G.S.C. Raulino,
A.G. Oliveira, A.B. dos Santos, R.F. Nascimento, Polymeric and
silica sorbents on endocrine disruptors determination, Desal.
Water Treat., 54 (2015) 156–165.
- E.M. Saggioro, F.P. Chaves, L.C. Felix, G. Gomes, D.M. Bila,
Endocrine disruptor degradation by UV/chlorine and the
impact of their removal on estrogenic activity and toxicity, Int.
J. Photoenergy, 2019 (2019) 1–9.
- J. de Rudder, T.V.d. Wiele, W. Dhooge, F. Comhaire,
W. Verstraete, Advanced water treatment with manganese
oxide for the removal of 17α-ethynylestradiol (EE2), Water
Res., 38 (2004) 184–192.
- P.S. Nasirabadi, E. Saljoughi, S.M. Mousavi, Membrane
processes used for removal of pharmaceuticals, hormones,
endocrine disruptors and their metabolites from wastewaters:
a review, Desal. Water Treat., 57 (2016) 24146–24175.
- Q. Sun, G. Zhu, C. Wang, Z. Yang, Q. Xue, Removal characteristics
of steroid estrogen in the mixed system through
an ozone-based advanced oxidation process, Water Air Soil
Pollut., 230 (2019) 218.1–218.14.
- I. Forrez, M. Carballa, H. Noppe, H.D. Brabander, N. Boon,
W. Verstraete, Influence of manganese and ammonium
oxidation on the removal of 17α-ethinylestradiol (EE2), Water
Res., 43 (2009) 77–86.
- J.-S. Park, N. Her, Y. Yoon, Ultrasonic degradation of bisphenol
A, 17β-estradiol, and 17α-ethinyl estradiol in aqueous solution,
Desal. Water Treat., 30 (2011) 300–309.
- E.K. Maher, K.N. O’Malley, J. Heffron, H. Jingwan, W. Yin,
B.K. Mayer, P.J. McNamara, Removal of estrogenic compounds
via iron electrocoagulation: impact of water quality and
assessment of removal mechanisms, Environ. Sci. Water Res.
Technol., 5 (2019) 956–966.
- B.T.S. Bui, A.-S. Belmont, H. Witters, K. Haupt, Molecular
recognition of endocrine disruptors by synthetic and natural
17β-estradiol receptors: a comparative study, Anal. Bioanal.
Chem., 390 (2008) 2081–2088.
- L. Jin, L. Chai, L. Ren, Y. Jiang, W. Yang, S. Wang, Q. Liao,
H. Wang, L. Zhang, Enhanced adsorption-coupled reduction
of hexavalent chromium by 2D poly(m-phenylenediamine)-
functionalized reduction graphene oxide, Environ. Sci. Pollut.
Res., 26 (2019) 1–12.
- S. He, H. Guo, Z. He, C. Yang, T. Yu, Q. Chai, L. Lu, Interaction
of Lolium perenne and Hyphomicrobium sp. GHH enhances
the removal of 17α-ethinyestradiol (EE2) from soil, J. Soil
Sediments, 19 (2019) 1297–1305.
- G. Cunha, B.M. de Souza-Chaves, D.M. Bila, J.P. Bassin,
M. Dezotti, Insights into estrogenic activity removal using
carbon nanotube electrochemical filter, Sci. Total Environ.,
678 (2019) 448–456.
- H. Yimin, L. Xinqing, F.C. Macazo, G. Matteo, R. Cai,
S.D. Minteer, Fast and efficient removal of chromium(VI)
anionic species by a reusable chitosan-modified multiwalled
carbon nanotube composite, Chem. Eng. J., 339 (2018)
259–267.
- K.V.G. Ravikumar, G. Debayan, P. Mrudula, N. Chandrasekaran,
M. Amitava, In situ formation of bimetallic FeNi
nanoparticles on sand through green technology: application
for tetracycline removal, Front. Environ. Sci. Eng., 14 (2020) 16.
- T.H. Nam, K. Goto, Y. Shimamura, Y. Inoue, T. Hashida,
Effects of high-temperature thermal annealing on properties
of aligned multi-walled carbon nanotube sheets and their
composites, Compos. Interfaces, 11 (2019) 1–18.
- Z.L. Cui, L.F. Dong, Z.K. Zhang, Oxidation behavior of nano-Fe
prepared by hydrogen ARC plasma method, Nanostruct.
Mater., 5 (1995) 829–833.
- C. Ji, L. Meng, H. Wang, Enhanced reductive dechlorination
of 1,1,1-trichloroethane using zero-valent iron-biocharcarrageenan
microspheres: preparation and microcosm study,
Environ. Sci. Pollut. Res. Int., 26 (2019) 30584–30595.
- S. Wu,T. Cajthaml, J. Semerad, A. Filipová, M. Klementova,
R. Skala, M. Vitkova, Z. Vaňková, M. Teodoro, Z. Wu,
D. Martínez-Fernández, M. Komárek, Nano zero-valent iron
aging interacts with the soil microbial community: a microcosm
study, Environ. Sci.: Nano, 6 (2019) 9081−9090.
- Y. Wu, X. Chen, Y. Han, D. Yue, X. Cao, Y. Zhao, X. Qian, Highly
efficient utilization of nano-Fe(0) embedded in mesoporous
carbon for activation of peroxydisulfate, Environ. Sci. Technol.,
53 (2019) 9081–9090.
- B. Wang, Y. Wang, Y. Zhou, F. Qi, Q. Ding, J. Li, X. OuYang,
L. Liu, Multi-walled carbon nanotube-reinforced boron carbide
matrix composites fabricated via ultra-high-pressure sintering,
J. Mater. Sci., 54 (2019) 11084–11095.
- J. Miyamoto, Y. Hattori, D. Noguchi, H. Tanaka, T. Ohba,
S. Utsumi, H. Kanoh, Y.A. Kim, H. Muramatsu, T. Hayashi,
M. Endo, K. Kaneko, Efficient H2 adsorption by nanopores of
high-purity double-walled carbon nanotubes, J. Am. Chem.
Soc., 128(2006) 12636–12637.
- S. Ming-Li, C. Rong-Ming, X. Xue-Cheng, C. Yi-Wei, L. Wei,
Adsorption of phenolic compounds on carbon nanotubes,
J. Northeast Normal Univ., 36 (2004) 71–75.
- Z. Lei, Study on the Adsorption Behavior of Modified Muti-
Walled Carbon Nano-tubes, Central South University, 2013.
- N. Almoisheer, F.A. Alseroury, R. Kumar, T. Almeelbi, M.A.
Barakat, Synthesis of graphene oxide/silica/carbon nanotubes
composite for removal of dyes from wastewater, Earth Syst.
Environ., 3 (2019) 651–659.
- L. Yangmei, Y. Min, T. Wei, Y Hong-xing, G. Siqi, L. Guizhen,
W. Hongbin, Determination of chlorpyrifos, triazophos and
profenofos in vegetables by gas chromatography with solid
phase extraction using multiwalled carbon nanotubes as
adsorbent, Sci. Technol. Food Ind., 35 (2014) 316–320.
- F.H. El-Sweify, I.M. Abdelmonem, A.M. El-Masry, T.E. Siyam,
S.F. Abo-Zahra, Adsorption behavior of Co(II) and Eu(III) on
polyacrylamide/multiwalled carbon nanotube composites,
Radiochemistry, 61 (2019) 323–330.
- K. Yang, L.Z. Zhu, B.S. Xing, Adsorption of polycyclic
aromatic hydrocarbons by carbon nanomaterials, Environ.
Sci. Technol., 40 (2006) 1855–1861.
- H. Zhang, B. Shen, W. Hu, X. Liu, Research on a fast-response
thermal conductivity sensor based on carbon nanotube
modification, Sensors, 18 (2018) 2191.
- S.J. Roosendaal, B.V. Asselen, J.W. Elsenaar, A.M. Vredenberg,
F.H.P.M. Habraken, The oxidation state of Fe(100) after initial
oxidation in O2, Surf. Sci., 442 (1999) 329–337.
- J. Du, Y. Wang, Faheem, T. Xu, H. Zheng, J. Bao, Synergistic
degradation of PNP via coupling H2O2 with persulfate
catalyzed by nano zero valent iron, RSC Adv., 9 (2019)
20323–20331.
- X. Xiaohong, C. Quanshui, Z. Jiawei, L. Xingyu, W. Lingyu,
H. Bin, Removal of U(VI) in aqueous solution by supported
zerovalent iron on calcium bentonite and the investigation
mechanism, Non-Met. Mines, 41 (2018) 83–86.
- P. Singh, P. Raizada, S. Kumari, A. Kumar, D. Pathania,
P. Thakura, Solar-Fenton removal of malachite green with novel
Fe0-activated carbon nanocomposite, Appl. Catal., A, 476 (2014)
9–18.
- A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-
García, J.M.D. Tascón, Surface chemistry of phosphoruscontaining
carbons of lignocellulosic origin, Carbon, 43(2005)
2857–2868.
- A. Wei, J. Ma, J. Chen, Y. Zhang, J. Song, X. Yu, Enhanced
nitrate removal and high selectivity towards dinitrogen for
groundwater remediation using biochar-supported nano zerovalent
iron, Chem. Eng. J., 353 (2018) 595–605.
- Y.-L. Ge, Y.-F. Zhang, Y. Yang, S. Xie, Y. Liu, T. Maruyamad,
Z.-Y. Deng, X. Zhao, Enhanced adsorption and catalytic
degradation of organic dyes by nanometer iron oxide anchored
to single-wall carbon nanotubes, Appl. Surf. Sci., 488 (2019)
813–826.
- J. Lu, K. Xu, J. Yang, Y. Hao, F. Cheng, Nano iron oxide
impregnated in chitosan bead as a highly efficient sorbent for
Cr(VI) removal from water, Carbohydr. Polym., 173 (2017) 28–36.
- Y.E. Unsal, M. Soylak, M. Tuzen, Spectrophotometric
detection of Rhodamine B after separation-enrichment by
using multi-walled carbon nanotubes, J. AOAC Int., 5 (2014)
1459–1462.
- S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr(VI)
and Pb(II) aqueous solutions using supported, nanoscale
zero-valent iron, Environ. Sci. Technol., 34 (2000) 2564–2569.
- H. He, B. Huang, G. Fu, Y. Du, D. Xiong, C. Lai, X. Pan, Coupling
electrochemical and biological methods for 17α-ethinylestradiol
removal from water by different microorganisms, J. Hazard.
Mater., 340 (2017) 120–129.
- X. Feng, X. Ping, J. Wei, W. Dongsheng, Immobilization of
horseradish peroxidase on Fe3O4 nanoparticles for enzymatic
removal of endocrine disrupting chemicals, Environ. Sci. Pollut.
Res., 27 (2020) 1–12.
- X. Bai, K. Acharya, Removal of seven endocrine disrupting
chemicals (EDCs) from municipal wastewater effluents by a
freshwater green alga, Environ. Pollut., 247 (2019) 534–540.
- E. Kassotaki, M. Pijuan, I. Rodriguez-Roda, G. Buttiglieri,
Comparative assessment of endocrine disrupting compounds
removal in heterotrophic and enriched nitrifying biomass,
Chemosphere, 217 (2019) 659–668.
- Y. Bin, L. Lina, The influence of temperature on the preparation
of single-walled carbon nanotubes by ACCVD, Technol. Wind,
17 (2014) 119.
- J. Liu, L. Wan, L. Zhang, Q. Zhou, Effect of pH, ionic strength,
and temperature on the phosphate adsorption onto lanthanumdoped
activated carbon fiber, J. Colloid Interface Sci., 364 (2011)
490–496.
- B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized
Fe0 nanoparticles for removal of hexavalent chromium in water,
Sci. Total Environ., 407 (2009) 4994–5000.
- J. Hu, C. Chen, X. Zhu, X. Wang, Removal of chromium from
aqueous solution by using oxidized multiwalled carbon
nanotubes, J. Hazard. Mater., 162 (2009) 1542–1550.
- J. Wang, K. Pan, Q. He, B. Cao, Polyacrylonitrile/polypyrrole
core/shell nanofiber mat for the removal of hexavalent
chromium from aqueous solution, J. Hazard. Mater., 244 (2013)
121–129.
- Q.-H. Zhou, T.-Y. Long, J. He, J.-S. Guo, Removal of BPA and EE2
from water by Mn-Fe embedded in acicular mullite, Environ.
Sci., 41 (2020) 763–772.
- S. Yan, Y. Chen, W. Xiang, Z. Bao, C. Liu, B. Deng, Uranium(VI)
reduction by nanoscale zero-valent iron in anoxic batch systems:
the role of Fe(II) and Fe(III), Chemosphere, 117(2014) 625–630.