References

  1. N.H. Alias, J. Jaafar, S. Samitsu, T. Matsuura, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N.H. Othman, N. Abdullah, S.H. Paiman, N. Yusof, F. Aziz, Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment, Chem. Eng. J., 360 (2019) 1437–1446.
  2. Z.Z. Ismail, M.A. Ibrahim, Desalination of oilfield produced water associated with treatment of domestic wastewater and bioelectricity generation in microbial osmotic fuel cell, J. Membr. Sci., 490 (2015) 247–255.
  3. X. Huang, J. Wang, C.Y. Ma, L.Y. Ma, C. Qiao, Diversity analysis of microbial communities and biodegradation performance of two halotolerant and thermotolerant Bacillus licheniformis strains in oilfield-produced wastewater, Int. Biodeterior. Biodegrad., 137 (2019) 30–41.
  4. R.N. Zhang, Y.N. Liu, M.R. He, Y.L. Su, X.T. Zhao, M. Elimelech, Z.Y. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms, Chem. Soc. Rev., 45 (2016) 5888–5924.
  5. G. Silva, B. Correia, A. Cunha, B. Santos, A. Lima, Water injection for oil recovery by using reservoir simulation via CFD, Int. J. Multiphys., 11 (2017) 83–96.
  6. J. Li, Y. Wang, S.L. Li, L.P. Fang, G.C. Hou, B.Y. Shi, Water quality deterioration of treated oilfield injection water in the water distribution system of the Jianghan oilfield, Water Supply, 19 (2018) 519–526.
  7. A. Fakhru’l-Razi, A. Pendashteh, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170 (2009) 530–551.
  8. A. Motta, A. Kiperstok, C. Borges, K. Esquerre, Oil produced water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes, J. Membr. Sci., 469 (2014) 371–378.
  9. B. He, L.J. Zhang, Q.H. Zhu, J. Wang, X. Yun, J.S. Luo, Z.K. Chen, Effect of solution treated 316L layer fabricated by laser cladding on wear and corrosive wear resistance, Opt. Laser Technol., 121 (2020) 105788–105796.
  10. P. Sarin, V.L. Snoeyink, D.A. Lytle, W.M. Kriven, Iron corrosion scales: model for scale growth, iron release, and colored water formation, J. Environ. Eng., 130 (2004) 364–373.
  11. Z.Q. Wang, Z.Y. Zhou, W.C. Xu, L.H. Yang, B.B. Zhang, Y.T. Li, Study on inner corrosion behavior of high strength product oil pipelines, Eng. Fail. Anal., 115 (2020) 104659–104671.
  12. P. Zhang, D. Shen, G.D. Ruan, A.T. Kan, M.B. Tomson, Phosphinopolycarboxylic acid modified inhibitor nanomaterial for oilfield scale control: synthesis, characterization and migration, J. Ind. Eng. Chem., 45 (2017) 366–374.
  13. M. Chen, K. Shafer-Peltier, M. Veisi, S. Randtke, E. Peltier, Complexation and precipitation of scale-forming cations in oilfield produced water with polyelectrolytes, Sep. Purif. Technol., 222 (2019) 1–10.
  14. S. Acharya, S.K. Sharma, V. Khandegar, Assessment and hydrogeochemical characterization for evaluation of corrosion and scaling potential of groundwater in South West Delhi, India, Data Brief, 18 (2018) 928–938.
  15. P. Zhang, Y. Liu, S.C. Kuok, A.T. Kan, M.B. Tomson, Development of modeling approaches to describe mineral scale deposition kinetics in porous medium and pipe flow system, J. Petrol. Sci. Eng., 178 (2019) 594–601.
  16. G.R. Joshi, K. Cooper, X.L. Zhong, A.B. Cook, E.A. Ahmad, N.M. Harrison, D.L. Engelberg, R. Lindsay, Temporal evolution of sweet oilfield corrosion scale: phases, morphologies, habits, and protection, Corros. Sci., 142 (2018) 110–118.
  17. X.-X. Li, J.-F. Liu, F. Yao, W.-L. Wu, S.-Z. Yang, S.-M. Mbadinga, J.-D. Gu, B.-Z. Mu, Dominance of Desulfotignum in sulfatereducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs, Int. Biodeterior. Biodegrad., 114 (2016) 45–56.
  18. G. Moradi, S. Zinadini, L. Rajabi, A.A. Derakhshan, Removal of heavy metal ions using a new high performance nanofiltration membrane modified with curcumin boehmite nanoparticles, Chem. Eng. J., 390 (2020) 124546–124560.
  19. Y. Ibrahim, V. Naddeo, F. Banat, S.W. Hasan, Preparation of novel polyvinylidene fluoride (PVDF)-Tin(IV) oxide (SnO2) ion exchange mixed matrix membranes for the removal of heavy metals from aqueous solutions, Sep. Purif. Technol., 250 (2020) 117250–117264.
  20. S.H. Ammar, A.S. Akbar, Oilfield produced water treatment in internal-loop airlift reactor using electrocoagulation/flotation technique, Chin. J. Chem. Eng., 26 (2018) 879–885.
  21. M. Prica, S. Adamovic, B. Dalmacija, L. Rajic, J. Trickovic, S. Rapajic, M. Becelic-Tomin, The electrocoagulation/flotation study: The removal of heavy metals from the waste fountain solution, Process Saf. Environ. Prot., 94 (2015) 262–273.
  22. M.M. Emamjomeh, M. Sivakumar, Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, J. Environ. Manage., 90 (2009) 1663–1679.
  23. S.M. Hosseini, H. Alibakhshi, E. Jashni, F. Parvizian, J.N. Shen, M. Taheri, M. Ebrahimi, N. Rafiei, A novel layerby- layer heterogeneous cation exchange membrane for heavy metal ions removal from water, J. Hazard. Mater., 381 (2020) 120884–120893.
  24. S.A. Dastgheib, C. Knutson, Y. Yang, H.H. Salih, Treatment of produced water from an oilfield and selected coal mines in the Illinois Basin, Int. J. Greenhouse Gas Control, 54 (2016) 513–523.
  25. M. Lu, X.F. Wei, Treatment of oilfield wastewater containing polymer by the batch activated sludge reactor combined with a zerovalent iron/EDTA/air system, Bioresour. Technol., 102 (2011) 2555–2562.
  26. J. Wu, R.J. Zeng, F. Zhang, Z.G. Yuan, Application of ironcrosslinked sodium alginate for efficient sulfide control and reduction of oilfield produced water, Water Res., 154 (2019) 12–20.
  27. S.A. Younis, M.M. Ghobashy, G. Bassioni, A.K. Gupta, Tailored functionalized polymer nanoparticles using gamma radiation for selected adsorption of barium and strontium in oilfield wastewater, Arabian J. Chem., 13 (2020) 3762–3774.
  28. S.A. Hassan, A.S. Darwish, H.M. Gobara, N.E.A. Abed- Elsatar, S.R. Fouda, Interaction profiles in poly (amidoamine) dendrimer/montmorillonite or rice straw ash hybridsimmobilized magnetite nanoparticles governing their removal efficiencies of various pollutants in wastewater, J. Mol. Liq., 230 (2017) 353–369.
  29. S.A. Hassan, F.Z. Yehia, H.A. Hassan, S.A. Sadek, A.S. Darwish, Various characteristics and catalytic performance of iron(II) phthalocyanine immobilized onto titania- and vanadia-pillared bentonite clay in in situ polymerization of methyl methacrylate: an attempt to synthesize novel polymer/iron phthalocyanine/ pillared clay nanocomposites, J. Mol. Catal. A: Chem., 332 (2010) 93–105.
  30. M.A. Mekewi, A.S. Darwish, M.E. Amin, H.A. Bourazan, Sustainable removal of Cu2+, Ni2+ and Zn2+ ions from severe contaminated water using kaolin/poly(glycine) composites, characterization and uptake studies, Desal. Water Treat., 51 (2013) 7746–7763.
  31. M.A. Mekewi, A.S. Darwish, M.S. Amin, Gh. Eshaq, H.A. Bourazan, Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation, Egypt. J. Pet., 25 (2016) 269–279.
  32. F.E.A. Bayaumy, A.S. Darwish, Exfoliated Egyptian kaolin immobilized heteropolyoxotungstate nanocomposite as an innovative antischistosomal agent: In vivo and in vitro bioactive studies, Mater. Sci. Eng., C, 59 (2016) 717–730.
  33. G. Choi, H.Y. Piao, Z.A. Alothman, A. Vinu, C.-O. Yun, J.-H. Choy, Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model, Int. J. Nanomed., 11 (2016) 337–348.
  34. S. Kar, B. Kundu, R.L. Reis, R. Sarkar, P. Nandy, R. Basu, S. Das, Curcumin ameliorates the targeted delivery of methotrexate intercalated montmorillonite clay to cancer cells, Eur. J. Pharm. Sci., 135 (2019) 91–102.
  35. R. Rojas, M. Rosario Perez, E.M. Erro, P.I. Ortiz, M.A. Ulibarri, C.E. Giacomelli, EDTA modified LDHs as Cu2+ scavengers: removal kinetics and sorbent stability, J. Colloid Interface Sci., 331 (2009) 425–431.
  36. E.H. de Faria, O.J. Lima, K.J. Ciuffi, E.J. Nassar, M.A. Vicente, R. Trujillano, P.S. Calefi, Hybrid materials prepared by interlayer functionalization of kaolinite with pyridine-carboxylic acids, J. Colloid Interface Sci., 335 (2009) 210–215.
  37. E. Iglesias, Solvent effects vs. concentration effects in determining rates of base-catalyzed keto-enol tautomerization, New J. Chem., 29 (2005) 625–632.
  38. R.L. Frost, E. Horváth, É. Makó, J. Kristóf, T. Cseh, The effect of mechanochemical activation upon the intercalation of a high-defect kaolinite with formamide, J. Colloid Interface Sci., 265 (2003) 386–395.
  39. T.A. Elbokl, C. Detellier, Intercalation of cyclic imides in kaolinite, J. Colloid Interface Sci., 323 (2008) 338–348.
  40. D. Naghipour, H. Gharibi, K. Taghavi, J. Jaafari, Influence of EDTA and NTA on heavy metal extraction from sandy-loam contaminated soils, J. Environ. Chem. Eng., 4 (2016) 3512–3518.
  41. M.R. Pérez, I. Pavlovic, C. Barriga, J. Cornejo, M.C. Hermosín, M.A. Ulibarri, Uptake of Cu2+, Cd2+ and Pb2+ on Zn–Al layered double hydroxide intercalated with EDTA, Appl. Clay Sci., 32 (2006) 245–251.
  42. H.D. Chapman, Cation Exchange Capacity, C.A. Black (Ed.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin USA, 1965, pp. 891–901.
  43. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  44. S.A. Siddiqi, F. Manzoor, A. Jamal, M. Tariq, R. Ahmad, M. Kamran, A. Chaudhry, I.U. Rehman, Mesenchymal stem cell (MSC) viability on PVA and PCL polymer coated hydroxyapatite scaffolds derived from cuttlefish, RSC Adv., 6 (2011) 32897–32904.
  45. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London, 1982.
  46. H.M.F. Freundlich, Over the adsorption in solution, Z. Phys. Chem., 57 (1906) 385–470.
  47. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  48. M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of activated charcoal, Proc. Acad. Sci. Phys. Chem. USSR, 55 (1947) 331–333.
  49. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta USSR, 12 (1940) 327–356.
  50. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Poreand solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  51. M.A. Mekewi, T.M. Madkour, A.S. Darwish, Y.M. Hashish, Does poly(acrylic acid-co-acrylamide) hydrogel be the pluperfect choiceness in treatment of dyeing wastewater? “From simple copolymer to gigantic aqua-waste remover”, J. Ind. Eng. Chem., 30 (2015) 359–371.
  52. H.W. Liu, T.Y. Gu, G. Zhang, H.F. Liu, Y.F. Cheng, Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation, Corros. Sci., 136 (2018) 47–59.
  53. J.L. Wang, B.S. Hou, J. Xiang, X.D. Chen, T.Y. Gu, H.F. Liu, The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate-reducing bacteria in X80 carbon steel corrosion, Corros. Sci., 150 (2019) 296–308.
  54. M. Kagan, G.K. Lockwood, S.H. Garofalini, Reactive simulations of the activation barrier to dissolution of amorphous silica in water, Phys. Chem. Chem. Phys., 16 (2014) 9294–9301.
  55. Z. Papanyan, S. Markarian, Detection of oxidation of L-cysteine by dimethyl sulfoxide in aqueous solutions by IR spectroscopy, J. Appl. Spectrosc., 80 (2013) 775–778.
  56. X.K. Leng, Y.J. Zhong, D.H. Xu, X.L. Wang, L. Yang, Mechanism and kinetics study on removal of Iron from phosphoric acid by cation exchange resin, Chin. J. Chem. Eng., 27 (2019) 1050–1057.
  57. K.G. Bhattacharyya, S.S. Gupta, Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium, Appl. Clay Sci., 41 (2008) 1–9.
  58. E.M.I. Elsehly, N.G. Chechenin, A.V. Makunin, E.A. Vorobyeva, H.A. Motaweh, Oxidized carbon nanotubes filters for iron removal from aqueous solutions, Int. J. New Technol. Sci. Eng., 2 (2015) 14–18.
  59. M.M.H. Khalil, K.Z. Al-Wakeel, S.S. Abd El Rehim, H. Abd El Monem, Efficient removal of ferric ions from aqueous medium by amine modified chitosan resins, J. Environ. Chem. Eng., 1 (2013) 566–573.
  60. M.M.H. Khalil, K.Z. Al-Wakeel, S.S. Abd El Rehim, H. Abd El Monem, Adsorption of Fe(III) from aqueous medium onto glycine-modified chitosan resin: equilibrium and kinetic studies, J. Dispersion Sci. Technol., 35 (2014) 1691–1698.
  61. S. Boussen, D. Sghaier, F. Chaabani, B. Jamoussi, S.B. Messaoud, A. Bennour, The rheological, mineralogical and chemical characteristic of the original and the Na2CO3-activated Tunisian swelling clay (Aleg Formation) and their utilization as drilling mud, Appl. Clay Sci., 118 (2015) 344–353.
  62. S.A. Abdel-Latef, A.S. Darwish, S.A. Rizk, S.K. Atya, M.H.E. Helal, Morphology control synthesis of iron-rich Sinai clay by novel O, N, S-heterocyclic moieties: magnetic organoclays for various strategic uses in lubricating oilfield industry, J. Mol. Liq., 288 (2019) 111006–1111021.
  63. S. Sircar, Influence of adsorbate size and adsorbent heterogeneity of IAST, AICHE J., 41 (1995) 1135–1145.
  64. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Elsevier Science Publication Company, New York, 1997.
  65. D.T. Sawyer, P.J. Paulsen, Properties and infrared spectra of ethylenediaminetetraacetic acid complexes. II. Chelates of divalent ions, J. Am. Chem. Soc., 81 (1959) 816–820.
  66. R. Rojas, M.A. Ulibarri, C. Barriga, V. Rives, Intercalation of metal-EDTA complexes in Ni–Zn layered hydroxysalts and study of their thermal stability, Microporous Mesoporous Mater., 112 (2008) 262–272.
  67. R.I. Jeldres, M.P. Arancibia-Bravo, A. Reyes, C.E. Aguirre, L. Cortes, L.A. Cisternas, The impact of seawater with calcium and magnesium removal for the flotation of coppermolybdenum sulphide ores, Miner. Eng., 109 (2017) 10–13.
  68. J. Kim, A. Jain, K.C. Zuo, R. Verduzco, S. Walker, M. Elimelech, Z.H. Zhang, X.H. Zhang, Q.L. Li, Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode, Water Res., 160 (2019) 445–453.
  69. T. Geng, D. Zhao, J. Xu, M. Ren, F.H. Cao, Removal of nickel and calcium from crude oil using core-shell materials grafted with N-substituted pyridines, J. Petrol. Sci. Eng., 195 (2020) 107502–107510.
  70. L.H. He, W.H. Xu, Y.F. Song, X.H. Liu, Z.W. Zhao, Selective removal of magnesium from a lithium-concentrated anolyte by magnesium ammonium phosphate precipitation, Sep. Purif. Technol., 187 (2017) 214–220.
  71. C. Xiao, L.S. Xiao, C.J. Gao, L. Zeng, Thermodynamic study on removal of magnesium from lithium chloride solutions using phosphate precipitation method, Sep. Purif. Technol., 156 (2015) 582–587.
  72. C. Arrouvel, J.-G. Eon, Understanding the surfaces and crystal growth of pyrite FeS2, Mater. Res., 22 (2019) 1140–1148.
  73. A.S. Darwish, F.E.A. Bayaumy, H.M. Ismail, Photoactivated water-disinfecting, and biological properties of Ag NPs@ Sm-doped ZnO nanorods/cuttlefish bone composite: in-vitro bactericidal, cercaricidal and schistosomicidal studies, Mater. Sci. Eng., C, 93 (2018) 996–1011.
  74. G. Hu, Study of inhibition performance of a vapor phase inhibitor on rusty iron coins, Am. J. Appl. Chem., 4 (2016) 207–211.
  75. D.-W. Jung, S.-W. Han, B.-S. Kong, E.-S. Oh, Crystal modification of iron oxide scale by potassium addition and its application to lithium-ion battery anodes, J. Power Sources, 242 (2013) 357–364.
  76. F. Zhao, J.-D. Zhou, F. Ma, R.-J. Shi, S.-Q. Han, J. Zhang, Y. Zhang, Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: applications for microbial enhanced oil recovery, Bioresour. Technol., 207 (2016) 24–30.
  77. P. Chavant, B. Gaillard-Martinie, M. Hébraud, Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase, FEMS Microbiol. Lett., 236 (2004) 241–248.
  78. S.H. Emami-Razavi, N. Esmaeili, S.K. Forouzannia, S. Amanpour, S. Rabbani, A.M. Alizadeh, M.A. Mohagheghi, Effect of bentonite on skin wound healing: experimental study in the rat model, Acta Med. Iran, 44 (2006) 235–240.
  79. S. Finnegan, S.L. Percival, EDTA: an antimicrobial and antibiofilm agent for use in wound care, Adv. Wound Care, 4 (2015) 415–421.