References

  1. H. Chang, G. Wang, Fractionation of nitrogen-enriched dissolved organic matter in water, Sep. Purif. Technol., 117 (2013) 89–97.
  2. L. Alexandrou, B.J. Meehan, O.A.H. Jones, Regulated and emerging disinfection by-products in recycled waters, Sci. Total Environ., 637–638 (2018) 1607–1616.
  3. W.H. Chu, X. Li, T. Bond, N.Y. Gao, D.Q. Yin, The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination, Chem. Eng. J., 285 (2016) 164–171.
  4. W. Lee, P. Westerhoff, J.P. Croué, Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane, Environ. Sci. Technol., 41 (2007) 5485–5490.
  5. Y.H. Chuang, A.Y.C. Lin, X.H. Wang, H.H. Tung, The contribution of dissolved organic nitrogen and chloramines to nitrogenous disinfection byproduct formation from natural organic matter, Water Res., 47 (2013) 1308–1316.
  6. W.H. Chu, N.Y. Gao, M.R. Templeton, D.Q. Yin, Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation, Chemosphere, 83 (2011) 647–651.
  7. M. Li, B. Xu, N.Y. Gao, D.P. Li, F.X. Tian, State-of-the-art of formation and of nitrogenous disinfection, by-products: haloamides, China Water Wastewater, 27 (2011) 31–34.
  8. J. Wu, M. Wu, J. Ye, H.L. Peng, W.W. Shi, Y.M. Liang, W. Liu, Solar photolysis of soluble microbial products as precursors of disinfection by-products in surface water, Chemosphere, 201 (2018) 66–76.
  9. X. Yang, Q.Q. Shen, W.H. Guo, J.F. Peng, Y.M. Liang, Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination, Chemosphere, 88 (2012) 25–32.
  10. L. Cermakova, L. Kopecka, M. Pivokonsky, L. Pivokonska, V. Janda, removal of cyanobacterial amino acids in water treatment by activated carbon adsorption, Sep. Purif. Technol., 173 (2017) 300–338.
  11. W.H. Chu, N.Y. Gao, Y. Deng, X. Li, Control of halogenated N-DBP precursors using traditional and advanced drinking. water treatment processes: a pilot-scale study in Chin’s Lake Taihu, ACS Symp. Ser., 1190 (2015) 307–339.
  12. Y.M. Zhang, W.H. Chu, D.C. Yao, D.Q. Yin, Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: formation potential and integrated toxicity, J. Environ. Sci., 58 (2017) 322–380.
  13. G.V.V. Liyanaarachchi, K.R.R. Mahanama, H.P.P.S. Somasiri, P.A.N. Punyasiri, Validation of a reversed-phase highperformance liquid chromatographic method for the determination of free amino acids in rice using L-theanine as the internal standard, Food Chem., 240 (2018) 196–203.
  14. Y.L. Ji, W.J. Qian, Q.F. An, K.R. Lee, C.J. Gao, Polyelectrolyte nanoparticles based thin-film nanocomposite (TFN) membranes for amino acids separation, J. Ind. Eng. Chem., 66 (2018) 209–220.
  15. L. Elsellami, F. Vocanson, F. Dappozze, E. Puzenat, O. Païsse, A. Houas, C. Guillard, Kinetic of adsorption and photocatalytic degradation of phenylalanine effect of pH and light intensity, Appl. Catal., A, 380 (2010) 142–148.
  16. X.Y. Ma, J. Deng, J. Feng, S. Narasimhamurthy, S. Elizabeth, M.D. Andrea, Identification and characterization of phenylacetonitrile as a nitrogenous disinfection byprodyct derived from chlorination of phenylalanine in drinking water, Water Res., 102 (2016) 202–210.
  17. Q. Xu, B. Xu, C. Qin, S.J. Xia, N.Y. Gao, F.X. Tian, D.P. Li, Chlorination byproducts formation potentials of typical nitrogenous organic compound, China Water Wastewater, 22 (2016) 9–12.
  18. A. Li, The Chlorination Disinfection By-products Formation Potenetial and Pathway of Amino Acids, Harbin Institute of Technology, 2011.
  19. S. Brosillon, M. Lemasle, E. Renault, D. Tozza, V. Heim, A. Laplanche, Analysis and occurrence of odorous disinfection by-products from chlorination of amino acids in three different drinking water treatment plants and corresponding distribution networks, Chemosphere, 77 (2009) 1035–1042.
  20. D. Kaźmierczak, W. Ciesielski, R. Zakrzewski, M. Żuber, Application of iodine–azide reaction for detection of amino acids in thin-layer chromatography, J. Chromatogr. A, 1059 (2004) 171–174.
  21. C. Desiderio, F. Iavarone, D.V. Rossetti, I. Messana, M. Castagnola, Capillary electrophoresis–mass spectrometry for the analysis of amino acids, J. Sep. Sci., 33 (2010) 2385–2393.
  22. Y.T. Song, C. Xu, H. Kuroki, Y.Y. Liao, M. Tsunoda, Recent trends in analytical methods for the determination of amino acids in biological samples, J. Pharm. Biomed. Anal., 147 (2018) 35–49.
  23. G. Sharma, S.V. Attri, B. Behra, S. Bhisikar, P. Kumar, M. Tageja, S. Sharda, P. Singhi, S. Singhi, Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory, Amino Acids, 46 (2014) 1253–1263.
  24. M.C. Guo, T.Y. Shi, Y.H. Duan, J.L. Zhu, J.Q. Li, Y.S. Cao, Investigation of amino acids in wolfberry fruit (Lycium barbarum) by solid-phase extraction and liquid chromatography with precolumn derivatization, J. Food Compos. Anal., 42 (2015) 84–90.
  25. Z.Q. Fan, H. Yu, Determination of piperidinium ionic liquid cations in environmental water samples by solid phase extraction and hydrophilic interaction liquid chromatography, J. Chromatogr. A, 1559 (2018) 136–140.
  26. T.H. Zuo, B. Francesco, L. Kathryn, I.K. Linge, A.J. Cynthia, W.A.C. JollJeffrey, Analysis of free amino acids in natural waters by liquid chromatography–tandem mass spectrometry, J. Chromatogr. A, 28 (2014) 135–146.
  27. V. Ittekkot, Variations of dissolved organic matter during a plankton bloom: qualitative aspects, based on sugar and amino acid analyses, Mar. Chem., 11 (1982) 143–158.
  28. M.M. Salcher, T. Posch, J. Pernthaler, In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake, ISME J., 7 (2013) 896–907.
  29. G.C. Zhang, S.K. Liang, X.Y. Shi, X.Y. Han, Dissolved organic nitrogen bioavailability indicated by amino acids during a diatom to dinoflagellate bloom succession in the Changjiang River estuary and its adjacent shelf, Mar. Chem., 176 (2015) 83–95.
  30. T.H. Zuo, L.L. Kathryn, B. Francesco, A.J. Cynthia, Formation of odorous and hazardous by-products from the chlorination of amino acids, Water Res., 146 (2018) 10–18.
  31. C. Volk, K. Bell, E. Ibrahim, D. Verges, G. Amy, M. LeChevallier, Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water, Water Res., 34 (2000) 3247–3257.
  32. W. Liu, G.Q. Cai, X.Y. Lu, Concentration variation and removal of amino acids in typical drinking sources in the South of China, Environ. Sci., 37 (2016) 3877–3883.
  33. P.C. Xie, J. Ma, J.Y. Fang, Y.H. Guan, S.Y. Yue, X.C. Li, L.W. Chen, Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation, Environ. Sci. Technol., 47 (2013) 14051–14061.
  34. J. Qi, H. Lan, R. Liu, S.Y. Miao, H.J. Liu, J.H. Qu, Prechlorination of algae-laden water: the effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation, Water Res., 102 (2016) 221–228.
  35. F.D. Berne, B. Panais, N. Merlet, B. Cauchi, B. Legube, Dissolved amino acid analysis in natural and drinking waters, Environ. Technol., 15 (1994) 901–916.
  36. M. Polanska, K. Huysman, C.V. Keer, Investigation of assimilable organic carbon (AOC) in flemish drinking water, Water Res., 39 (2005) 2259–2266.
  37. X.Y. Zhao, Q. Wu, Z.L. You, Study on microbiological water quality of drinking water network, J. Tianjin Univ., 38 (2005) 411–415.
  38. B. Xu, T. Ye, D.P. Li, C.Y. Hu, Y.L. Lin, S.J. Xia, F.X. Tian, N.Y. Gao, Measurement of dissolved organic nitrogen in a drinking water treatment plant: size fraction, fate, and relation to water quality parameters, Sci. Total Environ., 409 (2011) 1116–1122.
  39. H.H. Liu, D. Yang, Z.Y. Zhao, Z.J. Li, F.Q. Cheng, Algae removal of high algae raw water by coagulation enhanced by ozonation, Environ. Sci., 30 (2009) 1914–1919.
  40. S.H. Joo, W.A. Mitch, Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines, Environ. Sci. Technol., 39 (2007) 3811–3818.
  41. W.A. Mitch, I.M. Schreiber, Degradation of tertiary alkylamines during chlorination/chloramination: implications for formation of aldehydes, nitriles, halonitroalkanes, and nitrosamines, Environ. Sci. Technol., 42 (2008) 4811–4817.
  42. W.H. Chu, N.Y. Gao, Y. Deng, Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid, J. Hazard. Mater., 173 (2010) 82–86.
  43. R.H. Zhang, F.F. Wang, W.H. Chu, C. Fang, H. Wang, M.T. Hou, R. Xiao, G.X. Ji, Microbial degradation of typical amino acids and its impact on the formation of trihalomethanes, haloacetonitriles and haloacetamides during chlor(am)ination, Water Res., 159 (2019) 55–64.