Reference

  1. A. Kumar, H.M. Jena, Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column, J. Cleaner Prod., 137 (2016) 1246–1259.
  2. W.W. Anku, M.A. Mamo, P.P. Govender, Phenolic compounds in water: sources, reactivity, toxicity and treatment methods, Intechopen, 17 (2017) 419–444.
  3. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Phenol (Update), Public Health Service, U.S. Department of Health and Human Services. Available at: https://www.atsdr.cdc.gov/toxprofiles/tp115-c6.pdf, 2009
  4. National Health Commission Office, Pollution Control Area Announcement, Nong Nae, Thailand, 2013. Available at: http://www.greenworld.or.th/greenworld/population/2266
  5. World Health Organization, Phenol Health and Safety, IPCS International Programme on Chemical Safety, Health and Safety Guide No. 88, GVA, 1994.
  6. US EPA, National Recommended Water Quality Criteria– Human Health Criteria Table, 2016. Available at: https://www. epa.gov/wqc/national-recommended-waterquality-criteriahuman- health-criteria-table
  7. M. Caetano, C. Valderrama, A. Farran, J.L. Cortina, Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins, J. Colloid Interface Sci., 338 (2009) 402–409.
  8. P. Hedbavna, S.A. Rolfe, W.E. Huang, S.F. Thornton, Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells, Bioresour. Technol., 200 (2016) 426–434.
  9. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review, Chem. Eng. J., 284 (2016) 582–598.
  10. Z.H. Diao, X.R. Xu, H. Chen, D. Jiang, Y.X. Yang, L.J. Kong, Y. Sun, Q.W. Hao, L. Liu, Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism, J. Hazard. Mater., 316 (2016) 186–193.
  11. S.G. Huling, B.E. Pivetz, Engineering Issue In-situ Chemical Oxidation, U.S. Environmental Protection Agency (EPA), 2006.
  12. M. Ahmad, A.L. Teel, O.S. Furman, R.J. Watts, Oxidative and reductive pathways in iron-ethylenediaminetetraacetic acid (EDTA) activated persulfate systems, J. Environ. Eng., 138 (2012) 411–418.
  13. H. Liu, T.A. Bruton, F.M. Doyle, D.L. Sedlak, In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials, Environ. Sci. Technol., 48 (2014) 10330–10336.
  14. Y. Zhou, Y. Xiang, Y. He, Y. Yang, J. Zhang, L. Luo, H. Peng, C. Dai, F. Zhu, L. Tang, Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds, J. Hazard. Mater., 359 (2018) 396–407.
  15. A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R.L. Siegrist, P.L. Bjerg, In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review, Crit. Rev. Environ. Sci. Technol., 40 (2010) 55–91.
  16. Y. Fan, Y. Ji, D. Kong, J. Lu, Q. Zhou, Kinetic and mechanistic investigations of the degradation of sulfamethazine in heatactivated persulfate oxidation process, J. Hazard. Mater., 300 (2015) 39–47.
  17. D. Zhao, X. Liao, X. Yan, S.G. Huling, T. Chai, H. Tao, Effect and mechanism of persulfate activated by different methods for PAHs removal in soil, J. Hazard. Mater., 254 (2013) 228–235.
  18. Y. Chen, P. Deng, P. Xie, R. Shang, Z. Wang, S. Wang, Heatactivated persulfate oxidation of methyl-and ethyl-parabens: effect, kinetics, and mechanism, Chemosphere, 168 (2017) 1628–1636.
  19. Y. Ji, L. Wang, M. Jiang, J. Lu, C. Ferronato, J.-M. Chovelon, The role of nitrite in sulfate radical-based degradation of phenolic compounds: an unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO), Water Res., 123 (2017) 249–257.
  20. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants, Chem. Eng. J., 310 (2017) 41–62.
  21. A. Kambhu, M. Gren, W. Tang, S. Comfort, C. Harris, Remediating 1,4-dioxane-contaminated water with slowrelease persulfate and zerovalent iron, Chemosphere, 175 (2017) 170–177.
  22. C. Chokejaroenrat, C. Sakulthaew, T. Satapanajaru, T. Tikhamram, A. Pho-Ong, T. Mulseesuk, Treating methyl orange in a two-dimensional flow tank by in situ chemical oxidation using slow-release persulfate activated with zero-valent iron, Environ. Eng. Sci., 32 (2015) 1007–1015.
  23. D.W. Nelson, L.E. Sommers, Total Carbon, Organic Carbon and Organic Matter, A.L. Page, R.H. Miller, D.R. Keeney, Eds., Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed., American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Wisconsin, 1982, pp. 539–579.
  24. American Society for Testing and Materials, ASTM D422–63 (2002): Standard Test Method for Particle-Size Analysis of Soils, American Society for Testing and Materials (ASTM) International, West Conshohocken, Philadelphia, 2002.
  25. J.D. Rhoades, Cation Exchange Capacity, A.L. Page, R.H. Miller, D.R. Keeney, Eds., Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed., American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Wisconsin, 1982, pp. 149–157.
  26. APHA, AWWA, and WEF, 3111 Metals by Flame Atomic Absorption Spectrometry, Standard Methods For the Examination of Water and Wastewater Standard Methods for Examination of Water and Wastewater, 2018. Available at: https:// www.standardmethods.org/doi/full/10.2105/SMWW.2882.043
  27. American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/American Water Works Association/ Water Environment Federation, Washington, DC, 2005.
  28. C.M. Santana, Z.S. Ferrera, M.E.T. Padrón, J.J.S. Rodríguez, Methodologies for the extraction of phenolic compounds from environmental samples: new approaches, Molecules, 14 (2009) 298–320.
  29. J. Ma, H. Li, Y. Yang, X. Li, Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts, Water Sci. Technol., 2 (2018) 340–350.
  30. C. Liang, C.F. Huang, N. Mohanty, R.M. Kurakalva, A rapid spectrophotometric determination of persulfate anion in ISCO, Chemosphere, 73 (2008) 1540–1543.
  31. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  32. S. Ghafari, H.A. Aziz, M.H. Isa, A.A. Zinatizadeh, Application of response surface methodology (RSM) to optimize coagulationflocculation treatment of leachate using poly-aluminum chloride (PAC) and alum, J. Hazard. Mater., 163 (2009) 650–656.
  33. B.G. Petri, R.J. Watts, A. Tsitonaki, M. Crimi, N. Thompson, A.L. Teel, Fundamentals of ISCO Using Persulfate, R.L. Siegrist, M. Crimi, T.J. Simpkin, Eds., In Situ Chemical Oxidation for Groundwater Remediation, Vol. 3, SERDP/ESTCP Environmental Remediation Technology, Springer, New York, NY, 2011, pp. 1–678.
  34. World Health Organization, Chapter 9 - Groundwater, Water Quality Assessments - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed., UNESCO/WHO/ UNEP, London, 1996, p. 651.
  35. The Ministry of Industry, Thailand, Establish Technical Criteria and Standards for Public Health and Toxic Environmental Protection, 1999.
  36. C. Liang, I.-L. Lee, I.-Y. Hsu, C.-P. Liang, Y.-L. Lin, Persulfate oxidation of trichloroethylene with and without iron activation in porous media, Chemosphere, 70 (2008) 426–435.
  37. M.A. Hashim, S. Mukhopadhyay, J.N. Sahu, B. Sengupta, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage., 92 (2011) 2355–2388.
  38. Department of Groundwater Resource, The Report of the Analysis of Water Samples in Nong Nae, Chachoengsao, Thailand, 2015.
  39. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705–3712.
  40. M. Zhang, X. Chen, H. Zhou, M. Murugananthan, Degradation of p-nitrophenol by heat and metal ions co-activated persulfate, Chem. Eng. J., 264 (2015) 39–47.
  41. Y.-Y. Ahn, E. T. Yun, Heterogeneous metals and metal-free carbon materials for oxidative degradation through persulfate activation: a review of heterogeneous catalytic activation of persulfate related to oxidation mechanism, Korean J. Chem. Eng., 36 (2019) 1767–1779.
  42. Z.-H. Yang, Y.-T. Sheu, C.-D. Dong, C.-W. Chen, S. Chen, C.-M. Kao, Remediation of phenol-contaminated groundwater using in situ Fenton and persulfate oxidation: performance and mechanism studies, Desal. Water Treat., 175 (2020) 359–368.
  43. X. Li, L. Yuan, L. Zhao, A comparative study on oxidation of acidic red 18 by persulfate with ferrous and ferric ions: a comparative study on oxidation of acidic red 18 by persulfate with ferrous and ferric ions, Catalysts, 10 (2020) 698–711.
  44. S. Rodriguez, A. Santos, A. Romero, Oxidation of priority and emerging pollutants with persulfate activated by iron: effect of iron valence and particle size, Chem. Eng. J., 318 (2017) 197–205.
  45. T. Satapanajaru, M. Yoo-iam, P. Bongprom, P. Pengthamkeerati, Decolorization of Reactive Black 5 by persulfate oxidation activated by ferrous ion and its optimization, Desal. Water Treat., 56 (2015) 121–135.
  46. A. Long, Y. Lei, H. Zhang, Degradation of toluene by a selective ferrous ion activated persulfate oxidation process, Ind. Eng. Chem. Res., 53 (2014) 1033–1039.
  47. Y.Q. Zhang, X.F. Xie, W.L. Huang, S.B. Huang, Degradation of aniline by Fe2+-activated persulfate oxidation at ambient temperature, J. Cent. South Univ. Technol., 20 (2013) 1010–1014.
  48. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  49. A. Angkaew, C. Sakulthaew, T. Satapanajaru, A. Poapolathep, C. Chokejaroenrat, UV-activated persulfate oxidation of 17β-estradiol: implications for discharge water remediation, J. Environ. Chem. Eng., 7 (2019) 102858, doi: 10.1016/j. jece.2018.102858.
  50. C. Zhao, S. Zhong, C. Li, H. Zhou, S. Zhang, Property and mechanism of phenol degradation by biochar activated persulfate, J. Mater. Res. Technol., 9 (2020) 601–609.
  51. B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and its application in decontamination technologies, Crit. Rev. Environ. Sci. Technol., 45 (2015) 1756–1800.
  52. W. Bing, W. Wei, Degradation phenol wastewater by heating activated persulfate, Int. J. Environ. Monit. Anal., 7 (2019) 14–21.
  53. C. Chokejaroenrat, C. Sakulthaew, A. Angkaew, T. Satapanajaru, A. Poapolathep, Remediating sulfadimethoxine-contaminated aquaculture wastewater using ZVI-activated persulfate in a flow-through system, Aqua Eng., 84 (2019) 99–105.
  54. M. Ahmad, A.L. Teel, R.J. Watts, Mechanism of persulfate activation by phenols, Environ. Sci. Technol., 47 (2013) 5864–5871.
  55. G.P. Anipsitakis, D.D. Dionysiou, M.A. Gonzalez, Cobaltmediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions, Environ. Sci. Technol., 40 (2006) 1000–1007.
  56. H. Suzuki, S. Araki, H. Yamamoto, Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water, J. Water Process. Eng., 7 (2015) 54–60.
  57. J.S. Haselow, R.L. Siegrist, M. Crimi, T. Jarosch, Estimating the total oxidant demand for in situ chemical oxidation design, Remediation, 13 (2003) 5–16.
  58. Z. Zhou, X. Liu, K. Suna, C. Lin, J. Ma, M. He, W. Ouyang, Persulfate-based advanced oxidation processes (AOPs) for organic contaminated soil remediation: a review, Chem. Eng. J., 372 (2019) 836–851.
  59. A.L. Teel, F.C. Elloy, R.J. Watts, Persulfate activation during exertion of total oxidant demand, Chemosphere, 158 (2016) 184–192.
  60. B.S. Ismail, L.Y. Choo, S. Salmijah, M. Haiimah, M.A. Tayeb, Adsorption, desorption and mobility of cyfluthrin in three Malaysian tropical soils of different textures, J. Environ. Biol., 36 (2015) 1105–1111.
  61. I.A. Ololade, A.O. Adeola, N.A. Oladoja, O.O. Ololade, S.U. Nwaolisa, A.B. Alabi, I.V. Ogungbe, In-situ modification of soil organic matter towards adsorption and desorption of phenol and its chlorinated derivatives, J. Environ. Chem. Eng., 6 (2018) 3485–3494.
  62. M.J. Salloum, B. Chefetz, P.G. Hatcher, Phenanthrene sorption by aliphatic-rich natural organic matter, Environ. Sci. Technol., 36 (2002) 1953–1958.
  63. B. Subramanyam, A. Das, Study of the adsorption of phenol by two soils based on kinetic and isotherm modeling analyses, Desalination, 249 (2009) 914–921.
  64. K. Min, C. Freeman, H. Kang, S.-U. Choi, The regulation by phenolic compounds of soil organic matter dynamics under a changing environment, Biomed. Res. Int., 2015 (2015) 1–11.
  65. K.K. Shahin, A.E. Ahmed, S.M. Ismail, A.M.Z. El-Din, Sustainable treatment for high iron concentration in groundwater for irrigation purposes, J. Soil Water Conserv., 1 (2016) 10–16.