Reference
- A. Kumar, H.M. Jena, Removal of methylene blue and phenol
onto prepared activated carbon from Fox nutshell by chemical
activation in batch and fixed-bed column, J. Cleaner Prod.,
137 (2016) 1246–1259.
- W.W. Anku, M.A. Mamo, P.P. Govender, Phenolic compounds
in water: sources, reactivity, toxicity and treatment methods,
Intechopen, 17 (2017) 419–444.
- Agency for Toxic Substances and Disease Registry (ATSDR),
Toxicological Profile for Phenol (Update), Public Health Service,
U.S. Department of Health and Human Services. Available at:
https://www.atsdr.cdc.gov/toxprofiles/tp115-c6.pdf, 2009
- National Health Commission Office, Pollution Control Area
Announcement, Nong Nae, Thailand, 2013. Available at:
http://www.greenworld.or.th/greenworld/population/2266
- World Health Organization, Phenol Health and Safety, IPCS
International Programme on Chemical Safety, Health and
Safety Guide No. 88, GVA, 1994.
- US EPA, National Recommended Water Quality Criteria–
Human Health Criteria Table, 2016. Available at: https://www.
epa.gov/wqc/national-recommended-waterquality-criteriahuman-
health-criteria-table
- M. Caetano, C. Valderrama, A. Farran, J.L. Cortina, Phenol
removal from aqueous solution by adsorption and ion exchange
mechanisms onto polymeric resins, J. Colloid Interface Sci.,
338 (2009) 402–409.
- P. Hedbavna, S.A. Rolfe, W.E. Huang, S.F. Thornton,
Biodegradation of phenolic compounds and their metabolites
in contaminated groundwater using microbial fuel cells,
Bioresour. Technol., 200 (2016) 426–434.
- M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu,
Hydroxyl radicals based advanced oxidation processes (AOPs)
for remediation of soils contaminated with organic compounds:
a review, Chem. Eng. J., 284 (2016) 582–598.
- Z.H. Diao, X.R. Xu, H. Chen, D. Jiang, Y.X. Yang, L.J. Kong,
Y. Sun, Q.W. Hao, L. Liu, Simultaneous removal of Cr(VI)
and phenol by persulfate activated with bentonite-supported
nanoscale zero-valent iron: reactivity and mechanism, J. Hazard.
Mater., 316 (2016) 186–193.
- S.G. Huling, B.E. Pivetz, Engineering Issue In-situ Chemical
Oxidation, U.S. Environmental Protection Agency (EPA), 2006.
- M. Ahmad, A.L. Teel, O.S. Furman, R.J. Watts, Oxidative and
reductive pathways in iron-ethylenediaminetetraacetic acid
(EDTA) activated persulfate systems, J. Environ. Eng., 138 (2012)
411–418.
- H. Liu, T.A. Bruton, F.M. Doyle, D.L. Sedlak, In situ chemical
oxidation of contaminated groundwater by persulfate:
decomposition by Fe(III)- and Mn(IV)-containing oxides and
aquifer materials, Environ. Sci. Technol., 48 (2014) 10330–10336.
- Y. Zhou, Y. Xiang, Y. He, Y. Yang, J. Zhang, L. Luo, H. Peng,
C. Dai, F. Zhu, L. Tang, Applications and factors influencing
of the persulfate-based advanced oxidation processes for
the remediation of groundwater and soil contaminated with
organic compounds, J. Hazard. Mater., 359 (2018) 396–407.
- A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R.L. Siegrist,
P.L. Bjerg, In situ chemical oxidation of contaminated soil and
groundwater using persulfate: a review, Crit. Rev. Environ.
Sci. Technol., 40 (2010) 55–91.
- Y. Fan, Y. Ji, D. Kong, J. Lu, Q. Zhou, Kinetic and mechanistic
investigations of the degradation of sulfamethazine in heatactivated
persulfate oxidation process, J. Hazard. Mater., 300
(2015) 39–47.
- D. Zhao, X. Liao, X. Yan, S.G. Huling, T. Chai, H. Tao, Effect
and mechanism of persulfate activated by different methods for
PAHs removal in soil, J. Hazard. Mater., 254 (2013) 228–235.
- Y. Chen, P. Deng, P. Xie, R. Shang, Z. Wang, S. Wang, Heatactivated
persulfate oxidation of methyl-and ethyl-parabens:
effect, kinetics, and mechanism, Chemosphere, 168 (2017)
1628–1636.
- Y. Ji, L. Wang, M. Jiang, J. Lu, C. Ferronato, J.-M. Chovelon,
The role of nitrite in sulfate radical-based degradation of
phenolic compounds: an unexpected nitration process relevant
to groundwater remediation by in-situ chemical oxidation
(ISCO), Water Res., 123 (2017) 249–257.
- F. Ghanbari, M. Moradi, Application of peroxymonosulfate
and its activation methods for degradation of environmental
organic pollutants, Chem. Eng. J., 310 (2017) 41–62.
- A. Kambhu, M. Gren, W. Tang, S. Comfort, C. Harris,
Remediating 1,4-dioxane-contaminated water with slowrelease
persulfate and zerovalent iron, Chemosphere, 175 (2017)
170–177.
- C. Chokejaroenrat, C. Sakulthaew, T. Satapanajaru, T. Tikhamram,
A. Pho-Ong, T. Mulseesuk, Treating methyl orange
in a two-dimensional flow tank by in situ chemical oxidation
using slow-release persulfate activated with zero-valent iron,
Environ. Eng. Sci., 32 (2015) 1007–1015.
- D.W. Nelson, L.E. Sommers, Total Carbon, Organic Carbon
and Organic Matter, A.L. Page, R.H. Miller, D.R. Keeney, Eds.,
Methods of Soil Analysis. Part 2: Chemical and Microbiological
Properties, 2nd ed., American Society of Agronomy, Inc.
and Soil Science Society of America, Inc., Wisconsin, 1982,
pp. 539–579.
- American Society for Testing and Materials, ASTM D422–63
(2002): Standard Test Method for Particle-Size Analysis of
Soils, American Society for Testing and Materials (ASTM)
International, West Conshohocken, Philadelphia, 2002.
- J.D. Rhoades, Cation Exchange Capacity, A.L. Page, R.H. Miller,
D.R. Keeney, Eds., Methods of Soil Analysis. Part 2: Chemical
and Microbiological Properties, 2nd ed., American Society
of Agronomy, Inc. and Soil Science Society of America, Inc.,
Wisconsin, 1982, pp. 149–157.
- APHA, AWWA, and WEF, 3111 Metals by Flame Atomic
Absorption Spectrometry, Standard Methods For the Examination
of Water and Wastewater Standard Methods for
Examination of Water and Wastewater, 2018. Available at: https://
www.standardmethods.org/doi/full/10.2105/SMWW.2882.043
- American Public Health Association, Standard Methods for
the Examination of Water and Wastewater, 21st ed., American
Public Health Association/American Water Works Association/
Water Environment Federation, Washington, DC, 2005.
- C.M. Santana, Z.S. Ferrera, M.E.T. Padrón, J.J.S. Rodríguez,
Methodologies for the extraction of phenolic compounds from
environmental samples: new approaches, Molecules, 14 (2009)
298–320.
- J. Ma, H. Li, Y. Yang, X. Li, Influence of water matrix species
on persulfate oxidation of phenol: reaction kinetics and
formation of undesired degradation byproducts, Water Sci.
Technol., 2 (2018) 340–350.
- C. Liang, C.F. Huang, N. Mohanty, R.M. Kurakalva, A rapid
spectrophotometric determination of persulfate anion in
ISCO, Chemosphere, 73 (2008) 1540–1543.
- M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar,
L.A. Escaleira, Response surface methodology (RSM) as a tool
for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
- S. Ghafari, H.A. Aziz, M.H. Isa, A.A. Zinatizadeh, Application of
response surface methodology (RSM) to optimize coagulationflocculation
treatment of leachate using poly-aluminum
chloride (PAC) and alum, J. Hazard. Mater., 163 (2009) 650–656.
- B.G. Petri, R.J. Watts, A. Tsitonaki, M. Crimi, N. Thompson,
A.L. Teel, Fundamentals of ISCO Using Persulfate, R.L. Siegrist,
M. Crimi, T.J. Simpkin, Eds., In Situ Chemical Oxidation
for Groundwater Remediation, Vol. 3, SERDP/ESTCP
Environmental Remediation Technology, Springer, New York,
NY, 2011, pp. 1–678.
- World Health Organization, Chapter 9 - Groundwater, Water
Quality Assessments - A Guide to Use of Biota, Sediments and
Water in Environmental Monitoring, 2nd ed., UNESCO/WHO/
UNEP, London, 1996, p. 651.
- The Ministry of Industry, Thailand, Establish Technical Criteria
and Standards for Public Health and Toxic Environmental
Protection, 1999.
- C. Liang, I.-L. Lee, I.-Y. Hsu, C.-P. Liang, Y.-L. Lin, Persulfate
oxidation of trichloroethylene with and without iron activation
in porous media, Chemosphere, 70 (2008) 426–435.
- M.A. Hashim, S. Mukhopadhyay, J.N. Sahu, B. Sengupta,
Remediation
technologies for heavy metal contaminated
groundwater, J. Environ. Manage., 92 (2011) 2355–2388.
- Department of Groundwater Resource, The Report of the
Analysis of Water Samples in Nong Nae, Chachoengsao,
Thailand, 2015.
- G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the
interaction of transition metals with common oxidants, Environ.
Sci. Technol., 38 (2004) 3705–3712.
- M. Zhang, X. Chen, H. Zhou, M. Murugananthan, Degradation
of p-nitrophenol by heat and metal ions co-activated
persulfate, Chem. Eng. J., 264 (2015) 39–47.
- Y.-Y. Ahn, E. T. Yun, Heterogeneous metals and metal-free
carbon materials for oxidative degradation through persulfate
activation: a review of heterogeneous catalytic activation of
persulfate related to oxidation mechanism, Korean J. Chem.
Eng., 36 (2019) 1767–1779.
- Z.-H. Yang, Y.-T. Sheu, C.-D. Dong, C.-W. Chen, S. Chen,
C.-M. Kao, Remediation of phenol-contaminated groundwater
using in situ Fenton and persulfate oxidation: performance
and mechanism studies, Desal. Water Treat., 175 (2020) 359–368.
- X. Li, L. Yuan, L. Zhao, A comparative study on oxidation
of acidic red 18 by persulfate with ferrous and ferric ions: a
comparative study on oxidation of acidic red 18 by persulfate
with ferrous and ferric ions, Catalysts, 10 (2020) 698–711.
- S. Rodriguez, A. Santos, A. Romero, Oxidation of priority and
emerging pollutants with persulfate activated by iron: effect of
iron valence and particle size, Chem. Eng. J., 318 (2017) 197–205.
- T. Satapanajaru, M. Yoo-iam, P. Bongprom, P. Pengthamkeerati,
Decolorization of Reactive Black 5 by persulfate oxidation
activated by ferrous ion and its optimization, Desal. Water
Treat., 56 (2015) 121–135.
- A. Long, Y. Lei, H. Zhang, Degradation of toluene by a selective
ferrous ion activated persulfate oxidation process, Ind. Eng.
Chem. Res., 53 (2014) 1033–1039.
- Y.Q. Zhang, X.F. Xie, W.L. Huang, S.B. Huang, Degradation
of aniline by Fe2+-activated persulfate oxidation at ambient
temperature, J. Cent. South Univ. Technol., 20 (2013) 1010–1014.
- P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of
inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data,
17 (1988) 1027–1284.
- A. Angkaew, C. Sakulthaew, T. Satapanajaru, A. Poapolathep,
C. Chokejaroenrat, UV-activated persulfate oxidation of
17β-estradiol: implications for discharge water remediation,
J. Environ. Chem. Eng., 7 (2019) 102858, doi: 10.1016/j.
jece.2018.102858.
- C. Zhao, S. Zhong, C. Li, H. Zhou, S. Zhang, Property and
mechanism of phenol degradation by biochar activated
persulfate, J. Mater. Res. Technol., 9 (2020) 601–609.
- B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and
its application in decontamination technologies, Crit. Rev.
Environ. Sci. Technol., 45 (2015) 1756–1800.
- W. Bing, W. Wei, Degradation phenol wastewater by heating
activated persulfate, Int. J. Environ. Monit. Anal., 7 (2019) 14–21.
- C. Chokejaroenrat, C. Sakulthaew, A. Angkaew, T. Satapanajaru,
A. Poapolathep, Remediating sulfadimethoxine-contaminated
aquaculture wastewater using ZVI-activated persulfate in a
flow-through system, Aqua Eng., 84 (2019) 99–105.
- M. Ahmad, A.L. Teel, R.J. Watts, Mechanism of persulfate
activation by phenols, Environ. Sci. Technol., 47 (2013)
5864–5871.
- G.P. Anipsitakis, D.D. Dionysiou, M.A. Gonzalez, Cobaltmediated
activation of peroxymonosulfate and sulfate radical
attack on phenolic compounds. Implications of chloride ions,
Environ. Sci. Technol., 40 (2006) 1000–1007.
- H. Suzuki, S. Araki, H. Yamamoto, Evaluation of advanced
oxidation processes (AOP) using O3, UV, and TiO2 for the
degradation of phenol in water, J. Water Process. Eng., 7 (2015)
54–60.
- J.S. Haselow, R.L. Siegrist, M. Crimi, T. Jarosch, Estimating the
total oxidant demand for in situ chemical oxidation design,
Remediation, 13 (2003) 5–16.
- Z. Zhou, X. Liu, K. Suna, C. Lin, J. Ma, M. He, W. Ouyang,
Persulfate-based advanced oxidation processes (AOPs) for
organic contaminated soil remediation: a review, Chem. Eng. J.,
372 (2019) 836–851.
- A.L. Teel, F.C. Elloy, R.J. Watts, Persulfate activation during
exertion of total oxidant demand, Chemosphere, 158 (2016)
184–192.
- B.S. Ismail, L.Y. Choo, S. Salmijah, M. Haiimah, M.A. Tayeb,
Adsorption, desorption and mobility of cyfluthrin in three
Malaysian tropical soils of different textures, J. Environ. Biol.,
36 (2015) 1105–1111.
- I.A. Ololade, A.O. Adeola, N.A. Oladoja, O.O. Ololade,
S.U. Nwaolisa, A.B. Alabi, I.V. Ogungbe, In-situ modification
of soil organic matter towards adsorption and desorption of
phenol and its chlorinated derivatives, J. Environ. Chem. Eng.,
6 (2018) 3485–3494.
- M.J. Salloum, B. Chefetz, P.G. Hatcher, Phenanthrene sorption
by aliphatic-rich natural organic matter, Environ. Sci. Technol.,
36 (2002) 1953–1958.
- B. Subramanyam, A. Das, Study of the adsorption of phenol
by two soils based on kinetic and isotherm modeling analyses,
Desalination, 249 (2009) 914–921.
- K. Min, C. Freeman, H. Kang, S.-U. Choi, The regulation by
phenolic compounds of soil organic matter dynamics under
a changing environment, Biomed. Res. Int., 2015 (2015) 1–11.
- K.K. Shahin, A.E. Ahmed, S.M. Ismail, A.M.Z. El-Din,
Sustainable treatment for high iron concentration in groundwater
for irrigation purposes, J. Soil Water Conserv., 1 (2016) 10–16.