References

  1. NWC, Water Supply/Demand for Jeddah City for Year of 2017, National Water Company, Saudi Arabia, 2017. Available at: https://www.nwc.com.sa/ (Accessed 9 November 2017).
  2. SWCC, Annual Report for Operation & Maintenance. Saline Water Conservation Corporation, Saline Water Conversion Corporation, Riyadh, KSA, 2011.
  3. A.E.M. Al-Juaidi, Decision support system with multi-criteria, stability, and uncertainty analyses for resolving the municipal infrastructure conflict in the city of Jeddah, J. King Saud Univ. Eng. Sci., 31 (2019) 320–326.
  4. S. Chowdhury, M. Al-Zahrani, Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia, J. King Saud Univ. Eng. Sci., 27 (2015) 68–82.
  5. W.A. Abderrahman, Energy and water in arid developing countries: Saudi Arabia, a case-study, Int. J. Water Resour. Dev., 17 (2001) 247–255.
  6. A.E.M. Al-Juaidi, A simplified GIS-based SCS-CN method for the assessment of land-use change on runoff, Arabian J. Geosci., 11 (2018) 1–11, https://doi.org/10.1007/s12517-018-3621-4.
  7. A.E.M. Al-Juaidi, A.M. Nassar, O.E.M. Al-Juaidi, Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors, Arabian J. Geosci., 11 (2018) 1–10, https:// doi.org/10.1007/s12517-018-4095-0.
  8. M.F. Al-Rashed, M.M. Sherif, Water resources in the GCC countries: an overview, Water Resour. Manage., 14 (2000) 59–75.
  9. M.A. Al-Sahlawi, Seawater desalination in Saudi Arabia: economic review and demand projections, Desalination, 123 (1999) 143–147.
  10. A.S. Al-Shutayri, A.E.M. Al-Juaidi, Assessment of future urban water resources supply and demand for Jeddah City based on the WEAP model, Arabian J. Geosci., 12 (2019) 1–13, https:// doi.org/10.1007/s12517-019-4594-7.
  11. Stockholm Environment Institute (SEI), WEAP (Water Evaluation and Planning): User Guide for WEAP 21, Stockholm Environment Institute, Boston, USA, 2007. Available at: www. seib.org/weap/.
  12. A.E.M. Al-Juaidi, An integrated framework for municipal demand management and groundwater recovery in a water stressed area, Arabian J. Geosci., 12 (2019) 1–10, https://doi. org/10.1007/s12517-019-4503-0.
  13. A.E.M. Al-Juaidi, A hydrologic-economic-agronomic model with regard to salinity for an over-exploited coastal aquifer, Arabian J. Geosci., 12 (2019) 1–12, https://doi.org/10.1007/ s12517-019-4554-2.
  14. A.E. Al-Juaidi, J.J. Kaluarachchi, U. Kim, Multi-criteria decision analysis of treated wastewater use for agriculture in water deficit regions, J. Am. Water Resour. Assoc., 46 (2010) 395–411.
  15. A.E.M. Al-Juaidi, D.E. Rosenberg, J.J. Kaluarachchi, Water management with wastewater treatment and reuse, desalination, and conveyance to counteract future water shortages in the Gaza Strip, Int. J. Water Resour. Environ. Eng., 3 (2011) 266–282
  16. A.E. Al-Juaidi, J.J. Kaluarachchi, A.I. Mousa, Hydrologiceconomic model for sustainable water resources management in a coastal aquifer, J. Hydrol. Eng. ASCE, 19 (2014) 04014020, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000960.
  17. A.E. Al-Juaidi, Decision support system analysis with the graph model on non-cooperative generic water resource conflicts, Int. J. Eng. Technol., 6 (2017) 145–153.
  18. A.E. Al-Juaidi, T. Hegazy, Conflict resolution for Sacramento- San-Joaquin Delta with stability and sensitivity analyses using the graph model, J. Adv. Math. Comput. Sci., 20 (2017) 1–10, https://doi.org/10.9734/BJMCS/2017/31225.
  19. A.E. Al-Juaidi, U. Kim, J.J. Kaluarachchi, Decision Analysis to Minimize Agricultural Groundwater Demand and Salt Water Intrusion Using Treated Wastewater, Published in Sustainable Water Management Solutions for Large Cities in 2011, GQ10: Groundwater Quality Management in a Rapidly Changing World, Vol. 342, 7th International Groundwater Quality Conference, Eawag, Zurich, Switzerland, 2010.
  20. D. Yates, D. Purkey, J. Sieber, A. Huber-Lee, Climate driven water resources model of the Sacramento Basin, California, J. Water Resour. Plann. Manage., 135 (2009) 303–313.
  21. L. Bharati, V.U. Smakhtin, B.K. Anand, Modeling water supply and demand scenarios: the Godavari-Krishna inter-basin transfer, India, Water Policy, 11(2009) 140–153.
  22. A. Al-Omari, S. Al-Quraan, A. Al-Salihi, F. Abdulla, A water management support system for Amman-Zarqa basin in Jordan, Water Resour. Manage., 23 (2009) 3165–3189.
  23. B. Höllermann, S. Giertz, B. Diekkrüger, Benin 2025–balancing future water availability and demand using the WEAP ‘Water Evaluation and Planning’ system, Water Resour. Manage., 24 (2010) 3591–3613.
  24. H. Hoff, C. Bonzi, B. Joyce, K. Tielbörger, A water resources planning tool for the Jordan River basin, Water, 3 (2011) 718–736.
  25. S.V. Vicuña, P. Alvarez, O. Melo, L. Dale, F.J. Meza, Irrigation infrastructure development in the Limarí Basin in Central Chile: implications for adaptation to climate variability and climate change, Water Int., 39 (2014) 620–634.
  26. D.E. Rheinheimer, J.H. Viers, J. Sieber, M. Kiparsky, V.K. Mehta, S.T. Ligare, Simulating high-elevation hydropower with regional climate warming in the West Slope, Sierra Nevada, J. Water Resour. Plann. Manage., 140 (2014) 714–723.
  27. A. Hamlat, M. Errih, A. Guidoum, Simulation of water resources management scenarios in western Algeria watersheds using WEAP model, Arabian J. Geosci., 6 (2013) 2225–2236.
  28. K.A. Mourad, O. Alshihabi, Assessment of future Syrian water resources supply and demand by the WEAP model, Hydrol. Sci. J., 61 (20156) 393–401.
  29. L.M. Kou, X.Y. Li, J.Y. Lin, J.F. Kang, Simulation of urban water resources in Xiamen based on a WEAP model, Water, 10 (2018) 732, doi: 10.3390/w10060732.
  30. A.E.M. Al-Juaidi, A.S. Attiah, Evaluation of desalination and groundwater supply sources for future water resources management in Riyadh city, Desal. Water Treat., 175 (2020) 11–23.
  31. Saudi Ministry of Environment Water and Agriculture MEWA, Water and Electricity Conservation Guidelines, Ministry of Environment Water and Agriculture, Saudi Arabia, 2018. Available at: www.mewa.gov.sa (Accessed 20 July 2018).
  32. K.S. Taber, The use of Cronbach’s Alpha when developing and reporting research instruments in science education, Res. Sci. Educ., 48 (2018) 1273–1296.
  33. J.M. Cortina, What is coefficient alpha? An examination of theory and applications, J. Appl. Psychol., 78 (1993) 98–104.
  34. N. Schmitt, Uses and abuses of coefficient alpha, Psychol. Assess., 8 (1996) 350–353.
  35. D.P. Loucks, E. van Beek, J.R. Stedinger, J.P.M. Dijkman, M.T. Villars, Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications, Springer International Publishing, Cham, 2017.
  36. T. Hashimoto, J.R. Stedinger, D.P. Loucks, Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation, Water Resour. Res., 18 (1982) 14–20.
  37. A.S. Kamis, Future domestic water demand for Jeddah city, JKAU: Met., Env. Arid Land Agric. Sci., 23 (2012) 137–146
  38. World Bank, Kingdom of Saudi Arabia, Assessment of the Current Water Resource Management Situation (Unpublished Manuscript), Rural Development Water and Environment Department, Middle East and North Africa Region, World Bank, Washington, USA, 2004.
  39. R.Kh. Al Farawati, A. Al-Maradni, A.S. Basaham, M.A. El Sayed, Reclaimed municipal wastewater used for the irrigation of green areas in Jeddah: 1 – chemical characteristics, JKAU: Mar. Sci., 19 (2008) 121–146.
  40. A.E. Al-Juaidi, A. Al-Shotairy, Evaluation of municipal water supply system options using Water Evaluation and Planning System (WEAP): Jeddah case study, Desal. Water Treat., 176 (2020) 317–323.