References

  1. M. Dikilitas, S. Karakas, P. Ahmad, Effect of Lead on Plant and Human DNA Damages and its Impact on the Environment, P. Ahmad, Ed., Plant Metal Interaction, Elsevier, Amsterdam 2016, pp. 41–67.
  2. K. Pawluk, J. Fronczyk, K. Garbulewski, Experimental development of contaminants removal from multicomponent solutions using ZVI, zeolite and modified construction aggregate–batch and column tests, Desal. Water Treat., 144 (2019) 89–98.
  3. V. Rajaganapathy, F. Xavier, D. Sreekumar, P.K. Mandal, Heavy metal contamination in soil, water and fodder and their presence in livestock and products: a review, J. Environ. Sci. Technol., 4 (2011) 234–249.
  4. G. Aragay, A. Merkoci, Nanomaterials application in electrochemical detection of heavy metals, Electrochim. Acta, 84 (2012) 49–61.
  5. M.B. Gumpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, A review on detection of heavy metal ions in water - an electrochemical approach, Sens. Actuators, B, 213 (2015) 515‒533.
  6. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  7. Z. Koudelkova, T. Syrovy, P. Ambrozova, Z. Moravec, L. Kubac, D. Hynek, L. Richtera, V. Adam, Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide, Sensors, 17 (2017) 1832–1846.
  8. SS.L. Suib, Some grand challenges in environmental chemistry, Front. Chem., 1 (2013) 1–2.
  9. L. Pujol, D. Evrard, K. Groenen-Serrano, M. Freyssinier, A. Ruffien-Cizsak, P. Gros, Electrochemical sensors and devices for heavy metals assay in water: the French groups’ contribution, Front. Chem., 2 (2014) 1–24.
  10. P. Chooto, Chapter 6 - Modified Electrodes for Determining Trace Metal Ions, M. Stoytcheva, Ed., Applications of the Voltammetry, Intechopen, London, 2017, pp. 129‒152.
  11. H. Ghohari, H.A. Zamani, F. Joz-Yarmohammadi, M. Ebrahimi, M.R. Abedi, Application of 1,4-diaminoanthraquinone as a new sensing material for fabrication of a iron(III)-selective modified carbon paste electrode, Russ. J. Electrochem., 54 (2018) 747‒754.
  12. R.N. Adams, Carbon paste electrodes, Anal. Chem., 30 (1958) 1576‒1576.
  13. I. Svancara, K. Vytras, K. Kalcher, A. Walcarius, J. Wang, Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis, Electroanalysis, 21 (2009) 7–28.
  14. I. Svancara, A. Walcarius, K. Kalcher, K. Vytras, Carbon paste electrodes in the new millennium, Cent. Eur. J. Chem., 7 (2009) 598–656.
  15. I. Svancara, K. Kalcher, A. Walcarius, K. Vytras, Electroanalysis with Carbon Paste Electrodes, Analytical Chemistry Series, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2012.
  16. R.C. Alkire, P.N. Bartlett, J. Lipkowski, Eds., Electrochemistry of Carbon Electrodes, Advances in Electrochemical Science and Engineering, Vol. 16, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015.
  17. L. Cui, J. Wu, H.X. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials, Biosens. Bioelectron., 63 (2015) 276‒286.
  18. U. Anik, M. Cubukcu, Examination of the electroanalytic performance of carbon nanotube (CNT) modified carbon paste electrodes as xanthine biosensor transducers, Turk. J. Chem., 32 (2008) 711‒719.
  19. S. Shahrokhian, E. Asadian, Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode, Electrochim. Acta, 55 (2010) 666‒672.
  20. M. Soleimani, M.G. Afshar, Potentiometric sensor for trace level analysis of copper based on carbon paste electrode modified with multi-walled carbon nanotubes, Int. J. Electrochem. Sci., 8 (2013) 8719‒8729.
  21. S.M. Ghoreishi, M. Behpour, F.S. Ghoreishi, S. Mousavi, Voltammetric determination of tryptophan in the presence of uric acid and dopamine using carbon paste electrode modified with multi-walled carbon nanotubes, Arabian J. Chem., 10 (2017) S1546‒S1552.
  22. F. Li, J. Li, Y. Feng, L. Yang, Z. Du, Electrochemical behavior of graphene doped carbon paste electrode and its application for sensitive determination of ascorbic acid, Sens. Actuators, B, 157 (2011) 110‒114.
  23. H. Bahramipur, F. Jalali, Sensitive determination of paracetamol using a graphene-modified carbon-paste electrode, Afr. J. Pharm. Pharmacol., 6 (2012) 1298‒1305.
  24. W. Wonsawat, S. Chuanuwatanakul, W. Dungchai, E. Punrat, S. Motomizu, O. Chailapakul, Graphene-carbon paste electrode for cadmium and lead ion monitoring in a flow-based system, Talanta, 100 (2012) 282‒289.
  25. S.A. Zaidi, Graphene: a comprehensive review on its utilization in carbon paste electrodes for improved sensor performances, Int. J. Electrochem. Sci., 8 (2013) 11337‒11355.
  26. X. Xie, D. Zhou, X. Zheng, W. Huang, K. Wu, Electrochemical sensing of rutin using an MCM-41 modified electrode, Anal. Lett., 42 (2009) 678‒688.
  27. H. Guo, N. He, S. Ge, D. Yang, J. Zhang, Molecular sieves materials modified carbon paste electrodes for the determination of cardiac troponin I by anodic stripping voltammetry, Microporous Mesoporous Mater., 85 (2005) 89‒95.
  28. A. Deryło-Marczewska, M. Zienkiewicz-Strzałka, K. Skrzypczyńska, A. Świątkowski, K. Kuśmierek, Evaluation of the SBA-15 materials ability to accumulation of 4-chlorophenol on carbon paste electrode, Adsorption, 22 (2016) 801–812.
  29. W.S. Lin, Z.J. Jian, H.M. Lin, L.C. Lai, W.A. Chiou, Y.K. Hwu, S.H. Wu, W.C. Chen, Y.D. Yao, Synthesis and characterization of iron nanowires, J. Chin. Chem. Soc., 60 (2013) 85–91.
  30. M. Krajewski, W.S. Lin, H.M. Lin, K. Brzózka, S. Lewińska, N. Nedelko, A. Ślawska-Waniewska, J. Borysiuk, D. Wasik, Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction, Beilstein J. Nanotechnol., 6 (2015) 1652–1660.
  31. J.Y. Shen, Y.T. Yao, Y.J. Liu, J.S. Leng, Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance, J. Mater. Chem. C, 4 (2016) 7614–7621.
  32. X.Y. Yang, B. Yang, X.P. Li, Y. Cao, R.H. Yu, Structural-controlled chemical synthesis of nanosized amorphous Fe particles and their improved performances, J. Alloys Compd., 651 (2015) 551–556.
  33. G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders, Inorg. Chem., 34 (1995) 28–35.
  34. B. Yang, Y. Wu, X.P. Li, R.H. Yu, Chemical synthesis of highstable amorphous FeCo nanoalloys with good magnetic properties, Nanomaterials, 8 (2018) 154.
  35. M. Zaib, M.M. Athar, Electrochemical evaluation of phanerocheaete chrysosporium based carbon paste electrode with potassium ferricyanide redox system, Int. J. Electrochem. Sci., 10 (2015) 6690–6702.
  36. I. Cesarino, G. Marino, J.d.R. Matos, E.T.G. Cavalheiro, Evaluation of a carbon paste electrode modified with organo functionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions, Talanta, 75 (2008) 15–21.
  37. X.Z. Zhang, Y. Cui, Z.L. Lv, M. Li, S.S. Ma, Z.G. Cui, Q. Kong, Carbon nanotubes, conductive carbon black and graphite powder based paste electrodes, Int. J. Electrochem. Sci., 6 (2011) 6063–6073.
  38. A. Białek, K. Skrzypczyńska, K. Kuśmierek, A. Świątkowski, Voltammetric determination of MCPA, 4-chloro-o-cresol and o-cresol in water using a modified carbon paste electrode, Int. J. Electrochem. Sci., 14 (2019) 228–237.
  39. D.S. Rajawat, S. Srivastava, S.P. Satsangee, Mercury free anodic stripping voltammetric determination of Pb(II) using a low cost “cocos nucifera“ shell modified carbon paste electrodes, Natl. Acad. Sci. Lett., 37 (2014) 547–553.