References
- M. Dikilitas, S. Karakas, P. Ahmad, Effect of Lead on Plant
and Human DNA Damages and its Impact on the Environment,
P. Ahmad, Ed., Plant Metal Interaction, Elsevier, Amsterdam
2016, pp. 41–67.
- K. Pawluk, J. Fronczyk, K. Garbulewski, Experimental
development of contaminants removal from multicomponent
solutions using ZVI, zeolite and modified construction
aggregate–batch and column tests, Desal. Water Treat., 144 (2019)
89–98.
- V. Rajaganapathy, F. Xavier, D. Sreekumar, P.K. Mandal,
Heavy metal contamination in soil, water and fodder and their
presence in livestock and products: a review, J. Environ. Sci.
Technol., 4 (2011) 234–249.
- G. Aragay, A. Merkoci, Nanomaterials application in
electrochemical detection of heavy metals, Electrochim. Acta,
84 (2012) 49–61.
- M.B. Gumpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan,
A review on detection of heavy metal ions in water - an
electrochemical approach, Sens. Actuators, B, 213 (2015)
515‒533.
- M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
- Z. Koudelkova, T. Syrovy, P. Ambrozova, Z. Moravec,
L. Kubac, D. Hynek, L. Richtera, V. Adam, Determination
of zinc, cadmium, lead, copper and silver using a carbon
paste electrode and a screen printed electrode modified with
chromium(III) oxide, Sensors, 17 (2017) 1832–1846.
- SS.L. Suib, Some grand challenges in environmental chemistry,
Front. Chem., 1 (2013) 1–2.
- L. Pujol, D. Evrard, K. Groenen-Serrano, M. Freyssinier,
A. Ruffien-Cizsak, P. Gros, Electrochemical sensors and devices
for heavy metals assay in water: the French groups’ contribution,
Front. Chem., 2 (2014) 1–24.
- P. Chooto, Chapter 6 - Modified Electrodes for Determining
Trace Metal Ions, M. Stoytcheva, Ed., Applications of the
Voltammetry, Intechopen, London, 2017, pp. 129‒152.
- H. Ghohari, H.A. Zamani, F. Joz-Yarmohammadi, M. Ebrahimi,
M.R. Abedi, Application of 1,4-diaminoanthraquinone as a
new sensing material for fabrication of a iron(III)-selective
modified carbon paste electrode, Russ. J. Electrochem., 54
(2018) 747‒754.
- R.N. Adams, Carbon paste electrodes, Anal. Chem., 30 (1958)
1576‒1576.
- I. Svancara, K. Vytras, K. Kalcher, A. Walcarius, J. Wang,
Carbon paste electrodes in facts, numbers, and notes: a review
on the occasion of the 50-years jubilee of carbon paste in
electrochemistry and electroanalysis, Electroanalysis, 21 (2009)
7–28.
- I. Svancara, A. Walcarius, K. Kalcher, K. Vytras, Carbon paste
electrodes in the new millennium, Cent. Eur. J. Chem., 7 (2009)
598–656.
- I. Svancara, K. Kalcher, A. Walcarius, K. Vytras, Electroanalysis
with Carbon Paste Electrodes, Analytical Chemistry Series,
CRC Press, Taylor & Francis Group, Boca Raton, FL, 2012.
- R.C. Alkire, P.N. Bartlett, J. Lipkowski, Eds., Electrochemistry
of Carbon Electrodes, Advances in Electrochemical Science and
Engineering, Vol. 16, Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2015.
- L. Cui, J. Wu, H.X. Ju, Electrochemical sensing of heavy metal
ions with inorganic, organic and bio-materials, Biosens.
Bioelectron., 63 (2015) 276‒286.
- U. Anik, M. Cubukcu, Examination of the electroanalytic
performance of carbon nanotube (CNT) modified carbon paste
electrodes as xanthine biosensor transducers, Turk. J. Chem.,
32 (2008) 711‒719.
- S. Shahrokhian, E. Asadian, Simultaneous voltammetric
determination of ascorbic acid, acetaminophen and isoniazid
using thionine immobilized multi-walled carbon nanotube
modified carbon paste electrode, Electrochim. Acta, 55 (2010)
666‒672.
- M. Soleimani, M.G. Afshar, Potentiometric sensor for trace
level analysis of copper based on carbon paste electrode
modified with multi-walled carbon nanotubes, Int. J. Electrochem.
Sci., 8 (2013) 8719‒8729.
- S.M. Ghoreishi, M. Behpour, F.S. Ghoreishi, S. Mousavi,
Voltammetric determination of tryptophan in the presence of
uric acid and dopamine using carbon paste electrode modified
with multi-walled carbon nanotubes, Arabian J. Chem.,
10 (2017) S1546‒S1552.
- F. Li, J. Li, Y. Feng, L. Yang, Z. Du, Electrochemical behavior
of graphene doped carbon paste electrode and its application
for sensitive determination of ascorbic acid, Sens. Actuators, B,
157 (2011) 110‒114.
- H. Bahramipur, F. Jalali, Sensitive determination of paracetamol
using a graphene-modified carbon-paste electrode, Afr. J.
Pharm. Pharmacol., 6 (2012) 1298‒1305.
- W. Wonsawat, S. Chuanuwatanakul, W. Dungchai, E. Punrat,
S. Motomizu, O. Chailapakul, Graphene-carbon paste electrode
for cadmium and lead ion monitoring in a flow-based system,
Talanta, 100 (2012) 282‒289.
- S.A. Zaidi, Graphene: a comprehensive review on its utilization
in carbon paste electrodes for improved sensor
performances, Int. J. Electrochem. Sci., 8 (2013) 11337‒11355.
- X. Xie, D. Zhou, X. Zheng, W. Huang, K. Wu, Electrochemical
sensing of rutin using an MCM-41 modified electrode, Anal.
Lett., 42 (2009) 678‒688.
- H. Guo, N. He, S. Ge, D. Yang, J. Zhang, Molecular sieves
materials modified carbon paste electrodes for the determination
of cardiac troponin I by anodic stripping voltammetry,
Microporous Mesoporous Mater., 85 (2005) 89‒95.
- A. Deryło-Marczewska, M. Zienkiewicz-Strzałka, K. Skrzypczyńska,
A. Świątkowski, K. Kuśmierek, Evaluation of the
SBA-15 materials ability to accumulation of 4-chlorophenol
on carbon paste electrode, Adsorption, 22 (2016) 801–812.
- W.S. Lin, Z.J. Jian, H.M. Lin, L.C. Lai, W.A. Chiou, Y.K. Hwu,
S.H. Wu, W.C. Chen, Y.D. Yao, Synthesis and characterization
of iron nanowires, J. Chin. Chem. Soc., 60 (2013) 85–91.
- M. Krajewski, W.S. Lin, H.M. Lin, K. Brzózka, S. Lewińska,
N. Nedelko, A. Ślawska-Waniewska, J. Borysiuk, D. Wasik,
Structural and magnetic properties of iron nanowires and
iron nanoparticles fabricated through a reduction reaction,
Beilstein J. Nanotechnol., 6 (2015) 1652–1660.
- J.Y. Shen, Y.T. Yao, Y.J. Liu, J.S. Leng, Tunable hierarchical Fe
nanowires with a facile template-free approach for enhanced
microwave absorption performance, J. Mater. Chem. C, 4 (2016)
7614–7621.
- X.Y. Yang, B. Yang, X.P. Li, Y. Cao, R.H. Yu, Structural-controlled
chemical synthesis of nanosized amorphous Fe particles and
their improved performances, J. Alloys Compd., 651 (2015)
551–556.
- G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis,
Chemistry of borohydride reduction of iron(II) and iron(III) ions
in aqueous and nonaqueous media. Formation of nanoscale Fe,
FeB, and Fe2B powders, Inorg. Chem., 34 (1995) 28–35.
- B. Yang, Y. Wu, X.P. Li, R.H. Yu, Chemical synthesis of highstable
amorphous FeCo nanoalloys with good magnetic
properties, Nanomaterials, 8 (2018) 154.
- M. Zaib, M.M. Athar, Electrochemical evaluation of phanerocheaete
chrysosporium based carbon paste electrode with
potassium ferricyanide redox system, Int. J. Electrochem. Sci.,
10 (2015) 6690–6702.
- I. Cesarino, G. Marino, J.d.R. Matos, E.T.G. Cavalheiro,
Evaluation of a carbon paste electrode modified with organo
functionalised SBA-15 nanostructured silica in the simultaneous
determination of divalent lead, copper and mercury ions,
Talanta, 75 (2008) 15–21.
- X.Z. Zhang, Y. Cui, Z.L. Lv, M. Li, S.S. Ma, Z.G. Cui, Q. Kong,
Carbon nanotubes, conductive carbon black and graphite
powder based paste electrodes, Int. J. Electrochem. Sci., 6 (2011)
6063–6073.
- A. Białek, K. Skrzypczyńska, K. Kuśmierek, A. Świątkowski,
Voltammetric determination of MCPA, 4-chloro-o-cresol and
o-cresol in water using a modified carbon paste electrode, Int.
J. Electrochem. Sci., 14 (2019) 228–237.
- D.S. Rajawat, S. Srivastava, S.P. Satsangee, Mercury free anodic
stripping voltammetric determination of Pb(II) using a low
cost “cocos nucifera“ shell modified carbon paste electrodes,
Natl. Acad. Sci. Lett., 37 (2014) 547–553.