References

  1. J. Zhang, L. Giorno, E. Drioli, Study of a hybrid process combining PACs and membrane operations for antibiotic wastewater treatment, Desalination, 194 (2006) 101–107.
  2. A.Y.-C. Lin, T.-H. Yu, C.-F. Lin, Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan, Chemosphere, 74 (2008) 131–141.
  3. S.N. Muchohi, N. Thuo, J. Karisa, A. Muturi, G.O. Kokwaro, K. Maitland, Determination of ciprofloxacin in human plasma using high-performance liquid chromatography coupled with fluorescence detection: application to a population pharmacokinetics study in children with severe malnutrition, J. Chromatogr. B, 879 (2011) 146–152.
  4. A.R. Yazdanbakhsh, M. Manshouri, A. Sheikhmohammadi, M. Sardar, Investigation the efficiency of combined coagulation and advanced oxidation by fenton process in the removal of clarithromycin antibiotic COD, Water Wastewater, 23 (2012) 22–29.
  5. E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli, Source, occurrence and fate of antibiotics in the Italian aquatic environment, J. Hazard. Mater., 179 (2010) 1042–1048.
  6. S.D. Kim, J. Cho, I.S. Kim, B.J. Vanderford, S.A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters, Water Res., 41 (2007) 1013–1021.
  7. S. Kurwadkar, V. Sicking, B. Lambert, A. McFarland, F. Mitchell, Preliminary studies on occurrence of monensin antibiotic in Bosque River Watershed, J. Environ. Sci., 25 (2013) 268–273.
  8. A. Murata, H. Takada, K. Mutoh, H. Hosoda, A. Harada, N. Nakada, Nationwide monitoring of selected antibiotics: distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers, Sci. Total Environ., 409 (2011) 5305–5312.
  9. S. Dehghani, J.A. Jonidi, M. Farzadkia, M. Gholami, Investigation of the efficiency of Fenton’s advanced oxidation process in sulfadiazine antibiotic removal from aqueous solutions, Arak Med. Univ. J., 15 (2012) 19–29.
  10. Y. Kitazono, I. Ihara, G. Yoshida, K. Toyoda, K. Umetsu, Selective degradation of tetracycline antibiotics present in raw milk by electrochemical method, J. Hazard. Mater., 243 (2012) 112–116.
  11. M. Hadi, R. Shokoohi, A. Ebrahimzadeh Namvar, M. Karimi, M. Solaimany Aminabad, Antibiotic resistance of isolated bacteria from urban and hospital wastewaters in Hamadan City, Iran. J. Health Saf. Environ., 4 (2011) 105–114.
  12. A. Sheikhmohammadi, M. Sardar, The removal of penicillin G from aqueous solutions using chestnut shell modified with H2SO4: isotherm and kinetic study, Iran. J. Health Environ., 2013 (2013) 497–508.
  13. J. Muhammad, S. Khan, J.Q. Su, A.E.-L. Hesham, A. Ditta, J. Nawab, A. Ali, Antibiotics in poultry manure and their associated health issues: a systematic review, J. Soils Sediments, 20 (2020) 486–497.
  14. H. Chen, H. Luo, Y. Lan, T. Dong, B. Hu, Y. Wang, Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron, J. Hazard. Mater., 192 (2011) 44–53.
  15. L. Tong, P. Li, Y. Wang, K. Zhu, Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS, Chemosphere, 74 (2009) 1090–1097.
  16. G. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A. Mahvi, Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution, Int. J. Environ. Sci. Technol., 12 (2015) 603–616.
  17. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  18. E. Sahar, R. Messalem, H. Cikurel, A. Aharoni, A. Brenner, M. Godehardt, M. Jekel, M. Ernst, Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR), Water Res., 45 (2011) 4827–4836.
  19. K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Removal of antibiotics from a model wastewater by RO/NF membranes, Sep. Purif. Technol., 53 (2007) 244–249.
  20. W.L. Ang, A.W. Mohammad, N. Hilal, C.P. Leo, A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants, Desalination, 363 (2015) 2–18.
  21. M.A. Zazouli, R. Dianatitilaki, M. Safarpour, Nitrate removal from water by nano zero valent iron in the presence and absence of ultraviolet light, J. Mazandaran Univ. Med. Sci., 24 (2014) 151–161.
  22. S. Sharma, J. Ruparelia, M.L. Patel, A General Review on Advanced Oxidation Processes for Waste Water Treatment, Vol. 481, Institute of Technology, Nirma University, Ahmedabad, 2011, pp. 08–10.
  23. M. Oturan, OP3, Electrochemical Advanced Oxidation Processes for Efficient Removal of Persistent Organic Micropollutants from Wastewater. Application to Elimination of Pharmaceutical Pollutants, The Jubilee Conference on Applied Chemistry, 2011.
  24. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  25. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review, Chem. Eng. J., 284 (2016) 582–598.
  26. R.T. Paulsen, D.S. Kilin, Silver nanoparticles for catalysis of hydrogen peroxide decomposition: atomistic modeling, MRS Online Proc. Lib. Arch., 1787 (2015) 21–25.
  27. M.A Bhosale, B.M Bhanage, Silver nanoparticles: synthesis, characterization and their application as a sustainable catalyst for organic transformations, Curr. Org. Chem., 19 (2015) 708–727.
  28. J. Sharma, I. Mishra, D.D. Dionysiou, V. Kumar, Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): kinetics, influence of co-existing chemicals and degradation pathway, Chem. Eng. J., 276 (2015) 193–204.
  29. Y.-H. Guan, J. Ma, Y.-M. Ren, Y.-L. Liu, J.-Y. Xiao, L.-q. Lin, C. Zhang, Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals, Water Res., 47 (2013) 5431–5438.
  30. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants, Chem. Eng. J., 310 (2017) 41–62.
  31. Y. Rao, F. Han, Q. Chen, D. Wang, D. Xue, H. Wang, S. Pu, Efficient degradation of diclofenac by LaFeO3-catalyzed peroxymonosulfate oxidation-kinetics and toxicity assessment, Chemosphere, 218 (2019) 299–307.
  32. Y. Liu, Y. Wang, Gaseous elemental mercury removal using combined metal ions and heat activated peroxymonosulfate/H2O2 solutions, AIChE J., 65 (2019) 161–174.
  33. S. Esmaeili, M. Dehvari, A. Babaei, Degradation of Acid Orange 7 dye with PMS and H2O2 activated by CoFe2O4/PAC nanocomposite, Arch. Hyg. Sci., 8 (2019) 35–45.
  34. A.B. Kurukutla, P.S.S. Kumar, S. Anandan, T. Sivasankar, Sonochemical degradation of rhodamine b using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: proposed pathway and kinetics, Environ. Eng. Sci., 32 (2015) 129–140.
  35. J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
  36. Y. Feng, J. Liu, D. Wu, Z. Zhou, Y. Deng, T. Zhang, K. Shih, Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation, Chem. Eng. J., 280 (2015) 514–524.
  37. Y. Wang, X. Zhao, D. Cao, Y. Wang, Y. Zhu, Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid, Appl. Catal., B, 211 (2017) 79–88.
  38. M.M. Ahmed, S. Barbati, P. Doumenq, S. Chiron, Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination, Chem. Eng. J., 197 (2012) 440–447.
  39. Y.-q. Gao, N.-y. Gao, Y. Deng, Y.-q. Yang, Y. Ma, Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water, Chem. Eng. J., 195 (2012) 248–253.
  40. R. Xiao, Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang, D.D. Dionysiou, Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies, Curr. Opin. Chem. Eng., 19 (2018) 51–58.
  41. C. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang, Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants, Chemosphere, 151 (2016) 280–288.
  42. C. Zhang, Z. Hu, P. Li, S. Gajaraj, Governing factors affecting the impacts of silver nanoparticles on wastewater treatment, Sci. Total Environ., 572 (2016) 852–873.
  43. Y.-Y. Ahn, E.-T. Yun, J.-W. Seo, C. Lee, S.H. Kim, J.-H. Kim, J. Lee, Activation of peroxymonosulfate by surface-loaded noble metal nanoparticles for oxidative degradation of organic compounds, Environ. Sci. Technol., 50 (2016) 10187–10197.
  44. V. Thamilselvi, K. Radha, A review on the diverse application of silver nanoparticle, IOSR J. Pharm., 7 (2017) 21–27.
  45. L. Hou, H. Zhang, X. Xue, Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water, Sep. Purif. Technol., 84 (2012) 147–152.
  46. A. Eslami, H. Bahrami, A. Asadi, A. Alinejad, Enhanced sonochemical degradation of tetracycline by sulfate radicals, Water Sci. Technol., 73 (2016) 1293–1300.
  47. B. Li, L. Li, K. Lin, W. Zhang, S. Lu, Q. Luo, Removal of 1, 1, 1-trichloroethane from aqueous solution by a sono-activated persulfate process, Ultrason. Sonochem., 20 (2013) 855–863.
  48. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  49. E.S. Elmolla, M. Chaudhuri, Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution, Desalination, 256 (2010) 43–47.
  50. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review, J. Environ. Manage., 92 (2011) 2304–2347.
  51. Y. Ghaffari, A. Mahvi, M. Alimohammadi, R. Nabizadeh, A. Mesdaghinia, L. Kazemiza, Evaluation of Fenton process efficiency in removal of tetracycline from synthetic wastewater, J. Mazandaran Univ. Med. Sci., 27 (2017) 291–305.
  52. E. Yamal-Turbay, E. Jaén, M. Graells, M. Pérez-Moya, Enhanced photo-Fenton process for tetracycline degradation using efficient hydrogen peroxide dosage, J. Photochem. Photobiol., A, 267 (2013) 11–16.
  53. B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, A. Mirzaei, A. Azari, Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method, J. Photochem. Photobiol., A, 314 (2016) 178–188.
  54. R. Lindberg, P.-Å. Jarnheimer, B. Olsen, M. Johansson, M. Tysklind, Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards, Chemosphere, 57 (2004) 1479–1488.
  55. F. Rivas, O. Gimeno, T. Borallho, Aqueous pharmaceutical compounds removal by potassium monopersulfate. Uncatalyzed and catalyzed semicontinuous experiments, Chem. Eng. J., 192 (2012) 326–333.
  56. F. Ghanbari, M. Moradi, F. Gohari, Degradation of 2, 4, 6-trichlorophenol in aqueous solutions using peroxymonosulfate/ activated carbon/UV process via sulfate and hydroxyl radicals, J. Water Process Eng., 9 (2016) 22–28.
  57. P. Nfodzo, H. Choi, Triclosan decomposition by sulfate radicals: effects of oxidant and metal doses, Chem. Eng. J., 174 (2011) 629–634.
  58. S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment, IWA Publishing, London, 2004.
  59. A.H. Lau, N.P. Lam, S.C. Piscitelli, L. Wilkes, L.H. Danziger, Clinical pharmacokinetics of metronidazole and other nitroimidazole anti-infectives, Clin. Pharmacokinet., 23 (1992) 328–364.
  60. B. Dhandapani, S. Rasheed, P. Ramakrishna, A. Pradesh, Method development and validation for the simultaneous estimation of ofloxacin and ornidazole in tablet dosage form by RP-HPLC, Int. J. Pharma Sci. Res., 1 (2010) 78–83.
  61. M. Hoseini, G.H. Safari, H. Kamani, J. Jaafari, M. Ghanbarain, A.H. Mahvi, Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis, Toxicol. Environ. Chem., 95 (2013) 1680–1689.
  62. E. De Bel, J. Dewulf, B. De Witte, H. Van Langenhove, C. Janssen, Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products, Chemosphere, 77 (2009) 291–295.
  63. J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere, 78 (2010) 533–540.
  64. I.R. Bautitz, R.F.P. Nogueira, Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effects, J. Photochem. Photobiol., A, 187 (2007) 33–39.
  65. L. Yu, Z. Ye, J. Li, C. Ma, C. Ma, X. Liu, H. Wang, L. Tang, P. Huo, Y. Yan, Photocatalytic degradation mechanism of tetracycline by Ag@ZnO/C core–shell plasmonic photocatalyst under visible light, Nano, 13 (2018) 1850065, doi: 10.1142/S1793292018500650.
  66. N. Oturan, J. Wu, H. Zhang, V.K. Sharma, M.A. Oturan, Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials, Appl. Catal., B, 140 (2013) 92–97.