References
- J. Zhang, L. Giorno, E. Drioli, Study of a hybrid process
combining PACs and membrane operations for antibiotic
wastewater treatment, Desalination, 194 (2006) 101–107.
- A.Y.-C. Lin, T.-H. Yu, C.-F. Lin, Pharmaceutical contamination
in residential, industrial, and agricultural waste streams: risk
to aqueous environments in Taiwan, Chemosphere, 74 (2008)
131–141.
- S.N. Muchohi, N. Thuo, J. Karisa, A. Muturi, G.O. Kokwaro,
K. Maitland, Determination of ciprofloxacin in human plasma
using high-performance liquid chromatography coupled
with fluorescence detection: application to a population
pharmacokinetics study in children with severe malnutrition,
J. Chromatogr. B, 879 (2011) 146–152.
- A.R. Yazdanbakhsh, M. Manshouri, A. Sheikhmohammadi,
M. Sardar, Investigation the efficiency of combined coagulation
and advanced oxidation by fenton process in the removal of
clarithromycin antibiotic COD, Water Wastewater, 23 (2012)
22–29.
- E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli,
Source, occurrence and fate of antibiotics in the Italian
aquatic environment, J. Hazard. Mater., 179 (2010) 1042–1048.
- S.D. Kim, J. Cho, I.S. Kim, B.J. Vanderford, S.A. Snyder,
Occurrence and removal of pharmaceuticals and endocrine
disruptors in South Korean surface, drinking, and waste
waters, Water Res., 41 (2007) 1013–1021.
- S. Kurwadkar, V. Sicking, B. Lambert, A. McFarland, F. Mitchell,
Preliminary studies on occurrence of monensin antibiotic in
Bosque River Watershed, J. Environ. Sci., 25 (2013) 268–273.
- A. Murata, H. Takada, K. Mutoh, H. Hosoda, A. Harada,
N. Nakada, Nationwide monitoring of selected antibiotics:
distribution and sources of sulfonamides, trimethoprim, and
macrolides in Japanese rivers, Sci. Total Environ., 409 (2011)
5305–5312.
- S. Dehghani, J.A. Jonidi, M. Farzadkia, M. Gholami, Investigation
of the efficiency of Fenton’s advanced oxidation
process in sulfadiazine antibiotic removal from aqueous
solutions, Arak Med. Univ. J., 15 (2012) 19–29.
- Y. Kitazono, I. Ihara, G. Yoshida, K. Toyoda, K. Umetsu,
Selective degradation of tetracycline antibiotics present in raw
milk by electrochemical method, J. Hazard. Mater., 243 (2012)
112–116.
- M. Hadi, R. Shokoohi, A. Ebrahimzadeh Namvar, M. Karimi,
M. Solaimany Aminabad, Antibiotic resistance of isolated
bacteria from urban and hospital wastewaters in Hamadan
City, Iran. J. Health Saf. Environ., 4 (2011) 105–114.
- A. Sheikhmohammadi, M. Sardar, The removal of penicillin
G from aqueous solutions using chestnut shell modified with
H2SO4: isotherm and kinetic study, Iran. J. Health Environ.,
2013 (2013) 497–508.
- J. Muhammad, S. Khan, J.Q. Su, A.E.-L. Hesham, A. Ditta,
J. Nawab, A. Ali, Antibiotics in poultry manure and their
associated health issues: a systematic review, J. Soils Sediments,
20 (2020) 486–497.
- H. Chen, H. Luo, Y. Lan, T. Dong, B. Hu, Y. Wang, Removal of
tetracycline from aqueous solutions using polyvinylpyrrolidone
(PVP-K30) modified nanoscale zero valent iron, J. Hazard.
Mater., 192 (2011) 44–53.
- L. Tong, P. Li, Y. Wang, K. Zhu, Analysis of veterinary antibiotic
residues in swine wastewater and environmental water samples
using optimized SPE-LC/MS/MS, Chemosphere, 74 (2009)
1090–1097.
- G. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari,
A. Mahvi, Photocatalytic degradation of tetracycline using
nanosized titanium dioxide in aqueous solution, Int. J. Environ.
Sci. Technol., 12 (2015) 603–616.
- R. Daghrir, P. Drogui, Tetracycline antibiotics in the
environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
- E. Sahar, R. Messalem, H. Cikurel, A. Aharoni, A. Brenner,
M. Godehardt, M. Jekel, M. Ernst, Fate of antibiotics in
activated sludge followed by ultrafiltration (CAS-UF) and in a
membrane bioreactor (MBR), Water Res., 45 (2011) 4827–4836.
- K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Removal of
antibiotics from a model wastewater by RO/NF membranes,
Sep. Purif. Technol., 53 (2007) 244–249.
- W.L. Ang, A.W. Mohammad, N. Hilal, C.P. Leo, A review on
the applicability of integrated/hybrid membrane processes
in water treatment and desalination plants, Desalination,
363 (2015) 2–18.
- M.A. Zazouli, R. Dianatitilaki, M. Safarpour, Nitrate removal
from water by nano zero valent iron in the presence and
absence of ultraviolet light, J. Mazandaran Univ. Med. Sci.,
24 (2014) 151–161.
- S. Sharma, J. Ruparelia, M.L. Patel, A General Review on
Advanced Oxidation Processes for Waste Water Treatment,
Vol. 481, Institute of Technology, Nirma University, Ahmedabad,
2011, pp. 08–10.
- M. Oturan, OP3, Electrochemical Advanced Oxidation Processes
for Efficient Removal of Persistent Organic Micropollutants
from Wastewater. Application to Elimination of Pharmaceutical
Pollutants, The Jubilee Conference on Applied Chemistry,
2011.
- Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in
wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
- M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu,
Hydroxyl radicals based advanced oxidation processes (AOPs)
for remediation of soils contaminated with organic compounds:
a review, Chem. Eng. J., 284 (2016) 582–598.
- R.T. Paulsen, D.S. Kilin, Silver nanoparticles for catalysis of
hydrogen peroxide decomposition: atomistic modeling, MRS
Online Proc. Lib. Arch., 1787 (2015) 21–25.
- M.A Bhosale, B.M Bhanage, Silver nanoparticles: synthesis,
characterization and their application as a sustainable catalyst
for organic transformations, Curr. Org. Chem., 19 (2015)
708–727.
- J. Sharma, I. Mishra, D.D. Dionysiou, V. Kumar, Oxidative
removal of Bisphenol A by UV-C/peroxymonosulfate (PMS):
kinetics, influence of co-existing chemicals and degradation
pathway, Chem. Eng. J., 276 (2015) 193–204.
- Y.-H. Guan, J. Ma, Y.-M. Ren, Y.-L. Liu, J.-Y. Xiao, L.-q. Lin,
C. Zhang, Efficient degradation of atrazine by magnetic porous
copper ferrite catalyzed peroxymonosulfate oxidation via
the formation of hydroxyl and sulfate radicals, Water Res.,
47 (2013) 5431–5438.
- F. Ghanbari, M. Moradi, Application of peroxymonosulfate
and its activation methods for degradation of environmental
organic pollutants, Chem. Eng. J., 310 (2017) 41–62.
- Y. Rao, F. Han, Q. Chen, D. Wang, D. Xue, H. Wang, S. Pu,
Efficient degradation of diclofenac by LaFeO3-catalyzed peroxymonosulfate
oxidation-kinetics and toxicity assessment,
Chemosphere, 218 (2019) 299–307.
- Y. Liu, Y. Wang, Gaseous elemental mercury removal using
combined metal ions and heat activated peroxymonosulfate/H2O2 solutions, AIChE J., 65 (2019) 161–174.
- S. Esmaeili, M. Dehvari, A. Babaei, Degradation of Acid
Orange 7 dye with PMS and H2O2 activated by CoFe2O4/PAC
nanocomposite, Arch. Hyg. Sci., 8 (2019) 35–45.
- A.B. Kurukutla, P.S.S. Kumar, S. Anandan, T. Sivasankar,
Sonochemical degradation of rhodamine b using oxidants,
hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with
Fe2+ ion: proposed pathway and kinetics, Environ. Eng. Sci.,
32 (2015) 129–140.
- J. Wang, S. Wang, Activation of persulfate (PS) and
peroxymonosulfate (PMS) and application for the degradation
of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
- Y. Feng, J. Liu, D. Wu, Z. Zhou, Y. Deng, T. Zhang, K. Shih,
Efficient degradation of sulfamethazine with CuCo2O4 spinel
nanocatalysts for peroxymonosulfate activation, Chem. Eng. J.,
280 (2015) 514–524.
- Y. Wang, X. Zhao, D. Cao, Y. Wang, Y. Zhu, Peroxymonosulfate
enhanced visible light photocatalytic degradation bisphenol A
by single-atom dispersed Ag mesoporous g-C3N4 hybrid, Appl.
Catal., B, 211 (2017) 79–88.
- M.M. Ahmed, S. Barbati, P. Doumenq, S. Chiron, Sulfate
radical anion oxidation of diclofenac and sulfamethoxazole
for water decontamination, Chem. Eng. J., 197 (2012) 440–447.
- Y.-q. Gao, N.-y. Gao, Y. Deng, Y.-q. Yang, Y. Ma, Ultraviolet (UV)
light-activated persulfate oxidation of sulfamethazine in water,
Chem. Eng. J., 195 (2012) 248–253.
- R. Xiao, Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang,
D.D. Dionysiou, Activation of peroxymonosulfate/persulfate
by nanomaterials for sulfate radical-based advanced oxidation
technologies, Curr. Opin. Chem. Eng., 19 (2018) 51–58.
- C. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang, Activation of
peroxymonosulfate by base: implications for the degradation
of organic pollutants, Chemosphere, 151 (2016) 280–288.
- C. Zhang, Z. Hu, P. Li, S. Gajaraj, Governing factors affecting
the impacts of silver nanoparticles on wastewater treatment,
Sci. Total Environ., 572 (2016) 852–873.
- Y.-Y. Ahn, E.-T. Yun, J.-W. Seo, C. Lee, S.H. Kim, J.-H. Kim,
J. Lee, Activation of peroxymonosulfate by surface-loaded
noble metal nanoparticles for oxidative degradation of organic
compounds, Environ. Sci. Technol., 50 (2016) 10187–10197.
- V. Thamilselvi, K. Radha, A review on the diverse application
of silver nanoparticle, IOSR J. Pharm., 7 (2017) 21–27.
- L. Hou, H. Zhang, X. Xue, Ultrasound enhanced heterogeneous
activation of peroxydisulfate by magnetite catalyst for the
degradation of tetracycline in water, Sep. Purif. Technol.,
84 (2012) 147–152.
- A. Eslami, H. Bahrami, A. Asadi, A. Alinejad, Enhanced
sonochemical degradation of tetracycline by sulfate radicals,
Water Sci. Technol., 73 (2016) 1293–1300.
- B. Li, L. Li, K. Lin, W. Zhang, S. Lu, Q. Luo, Removal of 1, 1,
1-trichloroethane from aqueous solution by a sono-activated
persulfate process, Ultrason. Sonochem., 20 (2013) 855–863.
- M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual
pharmaceuticals from aqueous systems by advanced oxidation
processes, Environ. Int., 35 (2009) 402–417.
- E.S. Elmolla, M. Chaudhuri, Comparison of different advanced
oxidation processes for treatment of antibiotic aqueous
solution, Desalination, 256 (2010) 43–47.
- V. Homem, L. Santos, Degradation and removal methods
of antibiotics from aqueous matrices–a review, J. Environ.
Manage., 92 (2011) 2304–2347.
- Y. Ghaffari, A. Mahvi, M. Alimohammadi, R. Nabizadeh,
A. Mesdaghinia, L. Kazemiza, Evaluation of Fenton process
efficiency in removal of tetracycline from synthetic wastewater,
J. Mazandaran Univ. Med. Sci., 27 (2017) 291–305.
- E. Yamal-Turbay, E. Jaén, M. Graells, M. Pérez-Moya, Enhanced
photo-Fenton process for tetracycline degradation using
efficient hydrogen peroxide dosage, J. Photochem. Photobiol.,
A, 267 (2013) 11–16.
- B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi,
A. Mirzaei, A. Azari, Application of Fe3O4@C catalyzing
heterogeneous UV-Fenton system for tetracycline removal
with a focus on optimization by a response surface method,
J. Photochem. Photobiol., A, 314 (2016) 178–188.
- R. Lindberg, P.-Å. Jarnheimer, B. Olsen, M. Johansson,
M. Tysklind, Determination of antibiotic substances in
hospital sewage water using solid phase extraction and liquid
chromatography/mass spectrometry and group analogue internal
standards, Chemosphere, 57 (2004) 1479–1488.
- F. Rivas, O. Gimeno, T. Borallho, Aqueous pharmaceutical
compounds removal by potassium monopersulfate. Uncatalyzed
and catalyzed semicontinuous experiments, Chem. Eng. J.,
192 (2012) 326–333.
- F. Ghanbari, M. Moradi, F. Gohari, Degradation of 2, 4,
6-trichlorophenol in aqueous solutions using peroxymonosulfate/
activated carbon/UV process via sulfate and hydroxyl
radicals, J. Water Process Eng., 9 (2016) 22–28.
- P. Nfodzo, H. Choi, Triclosan decomposition by sulfate radicals:
effects of oxidant and metal doses, Chem. Eng. J., 174 (2011)
629–634.
- S. Parsons, Advanced Oxidation Processes for Water and
Wastewater Treatment, IWA Publishing, London, 2004.
- A.H. Lau, N.P. Lam, S.C. Piscitelli, L. Wilkes, L.H. Danziger,
Clinical pharmacokinetics of metronidazole and other
nitroimidazole anti-infectives, Clin. Pharmacokinet., 23 (1992)
328–364.
- B. Dhandapani, S. Rasheed, P. Ramakrishna, A. Pradesh,
Method development and validation for the simultaneous
estimation of ofloxacin and ornidazole in tablet dosage form
by RP-HPLC, Int. J. Pharma Sci. Res., 1 (2010) 78–83.
- M. Hoseini, G.H. Safari, H. Kamani, J. Jaafari, M. Ghanbarain,
A.H. Mahvi, Sonocatalytic degradation of tetracycline antibiotic
in aqueous solution by sonocatalysis, Toxicol. Environ. Chem.,
95 (2013) 1680–1689.
- E. De Bel, J. Dewulf, B. De Witte, H. Van Langenhove,
C. Janssen, Influence of pH on the sonolysis of ciprofloxacin:
biodegradability, ecotoxicity and antibiotic activity of its
degradation products, Chemosphere, 77 (2009) 291–295.
- J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation
of tetracycline antibiotics: mechanisms and kinetic studies
for advanced oxidation/reduction processes, Chemosphere,
78 (2010) 533–540.
- I.R. Bautitz, R.F.P. Nogueira, Degradation of tetracycline by
photo-Fenton process—solar irradiation and matrix effects,
J. Photochem. Photobiol., A, 187 (2007) 33–39.
- L. Yu, Z. Ye, J. Li, C. Ma, C. Ma, X. Liu, H. Wang, L. Tang, P. Huo,
Y. Yan, Photocatalytic degradation mechanism of tetracycline
by Ag@ZnO/C core–shell plasmonic photocatalyst under visible
light, Nano, 13 (2018) 1850065, doi: 10.1142/S1793292018500650.
- N. Oturan, J. Wu, H. Zhang, V.K. Sharma, M.A. Oturan,
Electrocatalytic destruction of the antibiotic tetracycline in
aqueous medium by electrochemical advanced oxidation
processes: effect of electrode materials, Appl. Catal., B,
140 (2013) 92–97.