References

  1. A. Sheikh Mohammadi, M. Sardar, The removal of penicillin G from aqueous solutions using chestnut shell modified with H2SO4: isotherm and kinetic study, Iran. J. Health Environ., 5 (2013) 497–509.
  2. H.R. Buser, T. Poiger, M.D. Müller, Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater, Environ. Sci. Technol., 33 (1999) 2529–2535.
  3. R.S. Valverde, M.D.G. García, M.M. Galera, H.C. Goicoechea, Determination of tetracyclines in surface water by partial least squares using multivariate calibration transfer to correct the effect of solid phase preconcentration in photochemically induced fluorescence signals, Anal. Chim. Acta, 562 (2006) 85–93.
  4. X. Hu, Y. Zhao, H. Wang, X. Tan, Y. Yang, Y. Liu, Efficient removal of tetracycline from aqueous media with a Fe3O4 nanoparticles@ graphene oxide nanosheets assembly, Int. J. Environ. Res. Public Health, 14 (2017) 1495, doi: 10.3390/ ijerph14121495.
  5. M.D. Hernando, M. Mezcua, A.R. Fernández-Alba, D. Barceló, Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments, Talanta, 69 (2006) 334–342.
  6. T. Urase, T. Kikuta, Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process, Water Res., 39 (2005) 1289–1300.
  7. G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217 (2013) 119–128.
  8. A. Fakhri, S. Adami, Adsorption and thermodynamic study of cephalosporins antibiotics from aqueous solution onto MgO nanoparticles, J. Taiwan Inst. Chem. Eng., 45 (2014) 1001–1006.
  9. H.A.M. Salim, S.A.M. Salih, R.A. Rashid, Removal of acid alizarin black dye from aqueous solution by adsorption using zinc oxide, Int. Res. J. Pure Appl. Chem., 11 (2016) 1–8.
  10. F.A. Shammala, B. Chiswell, Removal of chrysoidine Y from water by graphene-based nanocomposite derivatives with magnetic chitosan nanocomposite, Int. J. Appl. Pharm. Sci. Res., 4 (2019) 17–33.
  11. N. Mirzaei, A.H. Mahvi, H. Hossini, Equilibrium and kinetics studies of direct blue 71 adsorption from aqueous solutions using modified zeolite, Adsorpt. Sci. Technol., 36 (2018) 80–94.
  12. H. Hossini, A. Rezaee, S.O. Rastegar, S. Hashemi, M. Safari, Equilibrium and kinetic studies of chromium adsorption from wastewater by functionalized multi-wall carbon nanotubes, React. Kinet. Mech. Catal., 112 (2014) 371–382.
  13. N.M.S. Mohammed, H.A.M. Salim, Adsorption of Cr(VI) ion from aqueous solutions by solid waste of potato peels, Sci. J. Univ. Zakho, 5 (2017) 254–258.
  14. S.N. Nabavi, S.M. Sajjadi, Z. Lotfi, Novel magnetic nanoparticles as adsorbent in ultrasound-assisted micro-solidphase extraction for rapid pre-concentration of some trace heavy metal ions in environmental water samples: desirability function, Chem. Pap., 74 (2020) 1143–1159.
  15. Y.Y. Liang, L.M. Zhang, W. Li, R.F. Chen, Polysaccharidemodified iron oxide nanoparticles as an effective magnetic affinity adsorbent for bovine serum albumin, Colloid Polym. Sci., 285 (2007) 1193–1199.
  16. D.Z. Husein, R. Hassanien, M.F. Al-Hakkani, Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples, Heliyon, 5 (2019), doi: 10.1016/j.heliyon.2019.e02339.
  17. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
  18. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A Sinitskii, Z. Sun, A. Slesarev, Lawrence B. Alemany, Wei Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  19. L.J. Cote, F. Kim, J. Huang, Langmuir − Blodgett assembly of graphite oxide single layers, J. Am. Chem. Soc., 131 (2008) 1043–1049.
  20. Y. Zhong, S. Wang, Y. He, G. Song, Synthesis of magnetic/ graphene oxide composite and application for high-performance removal of polycyclic aromatic hydrocarbons from contaminated water, Nano Life, 5 (2015) 1542006, doi: 10.1142/ S1793984415420064.
  21. R.L. Sarah Connors, E.V.E. Renee Lanza, A. Sirocki, Removal of Ibuprofen from Drinking Water Using Adsorption, BS Thesis, Worcester Polytechnic Institute, Worcester, MA, 2013.
  22. D.Z. Husein, Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel, Desal. Water Treat., 51 (2013) 6761–6769.
  23. P. Banerjee, P. Das, A. Zaman, P. Das, Application of graphene oxide nanoplatelets for adsorption of ibuprofen from aqueous solutions: evaluation of process kinetics and thermodynamics, Process Saf. Environ. Prot., 101 (2016) 45–53.
  24. L. Rafati, M. Ehrampoush, A. Rafati, M. Mokhtari, A. Mahvi, Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies, Int. J. Environ. Sci. Technol., 15 (2018) 513–524.
  25. G. Dönmez, Z. Aksu, Removal of chromium(VI) from saline wastewaters by Dunaliella species, Process Biochem., 38 (2002) 751–762.
  26. H.R. Nodeh, W.A.W. Ibrahim, I. Ali, M.M. Sanagi, Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples, Environ. Sci. Pollut. Res., 23 (2016) 9759–9773.
  27. T. Gu, S.O. Rastegar, S.M. Mousavi, M. Li, M. Zhou, Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge, Bioresour. Technol., 261 (2018) 428–440.
  28. P. Chen, H. Song, L. Zhou, J. Chen, J. Liu, S. Yao, Magnetic solid-phase extraction based on ferroferric oxide nanoparticles doubly coated with chitosan and β-cyclodextrin in layer-bylayer mode for the separation of ibuprofen, RSC Adv., 6 (2016) 56240–56248.
  29. S. Rahdar, A. Rahdar, M. Khodadadi, S. Ahmadi, Error analysis of adsorption isotherm models for penicillin G onto magnesium oxide nanoparticles, Appl. Water Sci., 9 (2019) 190, doi: 10.1007/ s13201-019-1060-3.
  30. S. Ahmadi, F. Kord Mostafapour, Adsorptive removal of aniline from aqueous solutions by Pistacia atlantica (Baneh) shells: isotherm and kinetic studies, J. Sci. Technol. Environ. Inform., 5 (2017) 327–335.
  31. D. Balarak, F.K. Mostafapour, A. Joghataei, Experimental and kinetic studies on penicillin G adsorption by Lemna minor, Br. J. Pharm. Res., 9 (2016) 1–10.
  32. M.N. Alnajrani, O.A. Alsager, Removal of antibiotics from water by polymer of intrinsic microporosity: isotherms, kinetics, thermodynamics, and adsorption mechanism, Sci. Rep., 10 (2020) 1–14.
  33. D.T.C. Nguyen, H.T.N. Le, T.S. Do, V.T. Pham, L. Dai Tran, V.T.T. Ho, T.V. Tran, D.C. Nguyen, T.D. Nguyen, L.G. Bach, H.K.P. Ha, V.T. Doan, Metal-organic framework MIL-53 (Fe) as an adsorbent for ibuprofen drug removal from aqueous solutions: response surface modeling and optimization, J. Chem., 2019 (2019) 1–11.
  34. H. Hossini, R.D.C. Soltani, M. Safari, A. Maleki, R. Rezaee, R. Ghanbari, The application of a natural chitosan/bone char composite in adsorbing textile dyes from water, Chem. Eng. Commun., 204 (2017) 1082–1093.
  35. A. Arab Markadeh, A. Rezaee, S. Rastegar, H. Hossini, S. Ahmadi, E. Hoseinzadeh, Optimization of Remazol Brilliant Blue adsorption process from aqueous solutions using multiwalled carbon nanotube, Desal. Water Treat., 57 (2016) 13357–13365.
  36. M. Masoudi, M. Mashreghi, E. Goharshadi, A. Meshkini, Multifunctional fluorescent titania nanoparticles: green preparation and applications as antibacterial and cancer theranostic agents, Artif. Cells Nanomed. Biotechnol., 46 (2018) 248–259.
  37. B.N. Bhadra, I. Ahmed, S. Kim, S.H. Jhung, Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon, Chem. Eng. J., 314 (2017) 50–58.
  38. H. Ge, J. Wang, Ear-like poly (acrylic acid)-activated carbon nanocomposite: a highly efficient adsorbent for removal of Cd(II) from aqueous solutions, Chemosphere, 169 (2017) 443–449.
  39. A. Pholosi, E.B. Naidoo, A.E. Ofomaja, Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion study, S. Afr. J. Chem. Eng., 32 (2020) 39–55.
  40. H. Nourmoradi, A. Daneshfar, S. Mazloomi, J. Bagheri, S. Barati, Removal of Penicillin G from aqueous solutions by a cationic surfactant modified montmorillonite, MethodsX, 6 (2019) 1967–1973.
  41. S. Chavoshan, M. Khodadadi, N. Nasseh, A.H. Panahi, A. Hosseinnejad, Investigating the efficiency of single-walled and multi-walled carbon nanotubes in removal of penicillin G from aqueous solutions, Environ. Health Eng. Manage. J., 5 (2018) 187–196.
  42. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11.
  43. R.N. Coimbra, C. Escapa, M. Otero, Adsorption separation of analgesic pharmaceuticals from ultrapure and waste water: batch studies using a polymeric resin and an activated carbon, Polymers, 10 (2018) 958, doi: 10.3390/polym10090958.
  44. N. Cai, P. Larese-Casanova, Application of positively-charged ethylenediamine-functionalized graphene for the sorption of anionic organic contaminants from water, J. Environ. Chem. Eng., 4 (2016) 2941–2951.
  45. D. Balarak, F. Kord Mostafapour, A. Rakhsh Khorshid, Isotherm and kinetic study on the adsorption of penicillin g from aqueous solution by using modified canola, J. Rafsanjan Univ. Med. Sci., 15 (2016) 101–114.