References

  1. J. Michalowicz, Bisphenol A – sources, toxicity and biotransformation, Environ. Toxicol. Pharmacol., 37 (2014) 738–758.
  2. R. Perez-Lobato, V. Mustieles, I. Calvente, I. Jimenez-Diaz, R. Ramos, N. Caballero Casero, F.J. López-Jiménez, S. Rubio, N. Olea, M.F. Fernandez, Exposure to bisphenol A and behavior in school-age children, Neurotoxicology, 53 (2012) 12–19.
  3. G.G. Kuiper, J.G. Lemmen, B. Carlsson, J.C. Corton, S.H. Safe, P.T. Van der Saag, B. Van der Burg, J.A. Gustafsson, Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta, Endocrinology, 139 (1998) 4252–4263.
  4. N. Ben-Jonathan, Endocrine Disrupting Chemicals and Breast Cancer: The Saga of Bisphenol A, X. Zhang, Ed., Estrogen Receptor and Breast Cancer: Celebrating the 60th Anniversary of the Discovery of ER, Humana Press, Springer, Germany, 2019, pp. 343–377.
  5. B.E. Erickson, Bisphenol A under Scrutiny, Chem. Eng. News, 86 (2008) 36–39.
  6. J. Sajiki, J. Yonekubo, Leaching of bisphenol A (BPA) to seawater, Chemosphere, 51 (2003) 55−62.
  7. P. Guerra, M. Kim, S. Teslic, M. Alaee, S.A Smyth, Bisphenol-A removal in various wastewater treatment processes: operational conditions, mass balance, and optimization, J. Environ. Manage., 152 (2015) 192–200.
  8. Q. Li, F. Pan, W. Li, D. Li, H. Xu, D. Xia, A. Li, Enhanced adsorption of bisphenol A from aqueous solution with 2-vinylpyridine functionalized magnetic nanoparticles, Polymers, 10 (2018) 1136–1151.
  9. I. Bautista-Toledo, M. Ferro-Garcia, J. Rivera-Utrilla, C. Moreno- Castilla, F. Vegas Fernández, Bisphenol A removal from water by activated carbon, effects of carbon characteristics and solution chemistry, Environ. Sci. Technol., 39 (2005) 6246–6250.
  10. L.A. Goulart, S.A. Alves, L.H. Mascaro, Photo electrochemical degradation of bisphenol A using Cu doped WO3 electrodes, J. Electroanal. Chem., 839 (2019) 123–133.
  11. T. Suzuki, Y. Nakagawa, J. Takano, K. Yaguchi, K. Yasuda, Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity, Environ. Sci. Technol., 38 (2004) 2389–2396.
  12. W. Ma, C. Nie, X. Gao, D. Qu, X. Lun, B. Chen, Sorption characteristics and factors affecting the adsorption behavior of bisphenol A and 17β-estradiol/ethinyl estradiol in river- and farmland-based artificial groundwater recharge with reclaimed water, Desal. Water Treat., 57 (2016) 8015–8025.
  13. D. Bing-zhi, C. Hua-qiang, W. Lin, X. Sheng-ji, G. Nai-yun, The removal of bisphenol A by hollow fiber microfiltration membrane, Desalination, 250 (2010) 693–697.
  14. V. Bizek, J. Horacek, R. Rerich, M. Kousova, Amine extraction of hydroxycarboxylic acids. 1. Extraction of Citric Acid with 1-octanol, n-heptane solutions of trialkylamine, Ind. Eng. Chem. Res., 31 (1992) 1554–1562.
  15. R.S. Juang, R.H. Huang, R.T. Wu, Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane processes, J. Membr. Sci., 136 (1997) 89–99.
  16. A. Manzak, O. Tutkun, Extraction of citric acid through an emulsion liquid membrane containing aliquat 336 as carrier, Sep. Sci. Technol., 39 (2004) 2497–2512.
  17. R.S. Juang, L.J. Chen, Transport rate of citric acid across a supported liquid membrane containing salts of tertiary amine, J. Membr. Sci., 123 (1997) 81–87.
  18. R.S. Juang, L.J. Chen, Analysis of the transport rates of citric acid through a supported liquid membrane containing tri-noctylamine, Ind. Eng. Chem. Res., 35 (1996) 1673–1679.
  19. M. Sugiura, M.K. Kawa, S. Urita, Effect of plasticizer on the carrier-mediated transport of zinc ion through cellulose triacetate membranes, Sep. Sci. Technol., 22 (1987) 2263–2268.
  20. J. Lamb, A. Nazarenko, Selective metal ion sorption and transport using polymer inclusion membranes containing dicyclohexano-18-crown-6, Sep. Sci. Technol., 32 (1997) 2749–2764.
  21. I. Zawierucha, A. Nowik-Zajac, C.A. Kozlowski, Removal of Pb(II) ions using polymer inclusion membranes containing calix
  22. resorcinarene derivative as ion carrier, Polymers, 11 (2019) 2111–2124.
  23. N. Benosmane, S.M. Hamdi, M. Hamdi, B. Boutemeur, Selective transport of metal ions across polymer inclusion membranes (PIMs) containing calix
  24. resorcinarenes, Sep. Purif. Technol., 65 (2009) 211–219.
  25. L.D. Nghiem, P.I. Mornane, D. Potter, J.M. Perera, R.W. Cattrall, S.D. Kolev, Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs), J. Membr. Sci., 281 (2006) 7–41.
  26. M.I.G.S. Almeida, R.W. Cattrall, S.D. Kolev, Recent trends in extraction and transport of metal ion using polymer inclusion membrane (PIMs), J. Membr. Sci., 415 (2012) 9–23.
  27. N.S.W. Zulkefel, S.K. Weng, N. Syazana, A. Halim, Removal of heavy metals by polymer inclusion membranes, Curr. Pollut. Rep., 4 (2018) 84–92.
  28. M. Baczynska, M. Waszak, M. Nowicki, D. Przadka, S. Borysiak, M. Regel-Rosocka, Characterization of polymer inclusion membranes (PIMs) containing phosphonium ionic liquids as Zn(II) carriers, Ind. Eng. Chem. Res., 57 (2018) 5070−5082.
  29. A. Makowska, B. Pospiech, Synthesis of polymer inclusion membranes based on cellulose triacetate for recovery of lanthanum(III) from aqueous, Autex Res. J., 19 (2019) 288–292.
  30. A.T.N. Fajar, F. Kubota, M.L. Firmansyah, M. Gote, Separation of palladium(II) and rhodium(III) using a polymer inclusion membrane containing a phosphonium-based ionic liquid carrier, Ind. Eng. Chem. Res., 58 (2020) 22334–22342.
  31. M. Przewozna, P. Gajewski, N. Michalak, M.B. Bogacki, A. Skrzypczak, Determination of the percolation threshold for the oxalic, tartaric, and lactic acids transport through polymer inclusion membranes with 1-alkylimidazoles as a carrier, Sep. Sci. Technol., 49 (2014) 1745–1755.
  32. A. Garcia-Rodríguez, V. Matamoros, S.D. Kolev, C. Fontàs, Development of a polymer inclusion membrane (PIM) for the preconcentration of antibiotics in environmental water samples, J. Membr. Sci., 492 (2015) 32–39.
  33. N.H.M. Amin, F.S. Mehamod, F.B.M. Suah, A novel approach in simultaneous extraction of basic dyes by using a batch reactor consisting a polymer inclusion membrane, Alexandria Eng. J., 58 (2019) 929–935.
  34. M. Hedidi, S.M. Hamdi, T. Mazari, B. Boutemeur, C. Rabia, F. Chemat, M. Hamdi, Microwave-assisted synthesis of calix
  35. resorcinarenes, Tetrahedron, 62 (2006) 5652–5655.
  36. N. Benosmane, B. Boutemeur, S.M. Hamdi, M. Hamdi, Citric acid removal from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA, Desal. Water Treat., 114 (2018) 163–168.
  37. C. Fontas, R. Tayeb, M. Dhahbi, E. Gaudichet, F. Thominette, P. Roy, K. Steenkeste, M. P. Fontaine-Aupart, S. Tingry, E. Tronel- Peyroz, P. Seta, Polymer inclusion membranes: the concept of fixed sites membrane revised, J. Membr. Sci., 290 (2007) 62–72.
  38. N. Benosmane, B. Boutemeur, S.M. Hamdi, M. Hamdi, Removal of phenol from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA, Appl. Water Sci., 8 (2018) 1–6.
  39. I. Pérez-Silva, C.A. Galán-Vidal, M.T. Ramírez-Silva, J.A. Rodríguez, G.A. Álvarez-Romero, M.E. Pá́ez-Hernández, Phenol removal process development from synthetic wastewater solutions using a polymer inclusion membrane, Ind. Eng. Chem. Res., 52 (2013) 4919–4923.
  40. J. De Gyves, A.M. Hernandez-Andaluz, E.R. de San Miguel, LIXloaded polymer inclusion membrane for copper(II) transport: 2. Optimization of the efficiency factors (permeability, selectivity, and stability) for LIX 84-I, J. Membr. Sci., 268 (2006) 142–149.