References

  1. M. Misono, Chapter 5 - Mixed Oxides as Catalyst Supports, M. Misono, Ed., Studies in Surface Science and Catalysis, Elsevier, 2013, pp. 157–173.
  2. I.E. Wachs, K. Routray, Catalysis science of bulk mixed oxides, ACS Catal., 2 (2012) 1235–1246.
  3. K. Karásková, J. Strakošová, K. Jirátová, L.Obalová, Supported Co–Mn–Al mixed oxides as catalysts for N2O decomposition, C.R. Chim., 18 (2015) 1114–1122.
  4. S. Liu, X. Wu, D. Weng, R. Ran, Ceria-based catalysts for soot oxidation: a review, J. Rare Earths, 33 (2015) 567–590.
  5. J. Ding, Q. Zhong, S. Zhang, A new insight into catalytic ozonation with nanosized Ce–Ti oxides for NOx removal: confirmation of Ce–O–Ti for active sites, Ind. Eng. Chem. Res., 54 (2015) 2012–2022.
  6. J. Lan, M. Haneda, Z. Liu, Selective catalytic reduction of NOx with NH3 over a novel Co–Ce–Ti catalyst, Catal. Today, (2020), doi: 10.1016/j.cattod.2020.05.040 (in press).
  7. Q. Zhong, J. Ding, L. Guo, W. Zhao, S. Zhang, Effect of fluorine additives on the performance of amorphous Ce–Ti catalyst and its promotional progress on ozone for NOx (x = 1, 2) removal at low temperature, J. Fluorine Chem., 191 (2016) 120–128.
  8. M. Mureseanu, M. Filip, S. Somacescu, A. Baran, G. Carja, V. Parvulescu, Ce, Ti modified MCM-48 mesoporous photocatalysts: effect of the synthesis route on support and metal ion properties, Appl. Surf. Sci., 444 (2018) 235–242.
  9. X. Cao, X. Yang, H. Li, W. Huang, X. Liu, Investigation of Ce-TiO2 photocatalyst and its application in asphalt-based specimens for NO degradation, Constr. Build. Mater., 148 (2017) 824–832.
  10. S. Dey, G.C. Dhal, Cerium catalysts applications in carbon monoxide oxidations, Mater. Sci. Energy Technol., 3 (2020) 6–24.
  11. P. Ellappan, L.R. Miranda, Synthesis and characterization of cerium doped titanium catalyst for the degradation of nitrobenzene using visible light, Int. J. Photoenergy, 4 (2014) 1–9, doi: 10.1155/2014/756408.
  12. Z. Piskuła, P. Skokowski, T. Toliński, M. Zieliński, P. Kirszensztejn, W. Nowicki, Structure, magnetic and catalytic properties of SiO2-MFe2O4 (M = Mn, Co, Ni, Cu) nanocomposites and their syntheses by a modified sol–gel method, Mater. Chem. Phys., 235 (2019) 121731, doi: 10.1016/j.matchemphys.2019.121731.
  13. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62 (1940) 1723–1732.
  14. M. Kosmulski, Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review, Adv. Colloid Interface Sci., 238 (2016) 1–61.
  15. N. Hamdi, E. Srasra, Acid-base properties of organosmectite in aqueous suspension, Appl. Clay Sci., 99 (2014) 1–6.
  16. B. Palas, G. Ersöz, S. Atalay, Catalytic wet air oxidation of Reactive Black 5 in the presence of LaNiO3 perovskite catalyst as a green process for azo dye removal, Chemosphere, 209 (2018) 823–830.
  17. E.K. Goharshadi, M. Hadadian, M. Karimi, H. Azizi-Toupkanloo, Photocatalytic degradation of reactive black 5 azo dye by zinc sulfide quantum dots prepared by a sonochemical method, Mater. Sci. Semicond. Process., 16 (2013) 1109–1116.
  18. C. Bradu, L. Frunza, N. Mihalache, S. Avramescu, M. Neaţă, I. Udrea, Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3, Appl. Catal., B, 96 (2010) 548–556.
  19. H. Benbachir, H. Gaffour, M. Mokhtari, Photodegradation of 2,4,6-trichlorophenol using natural hematite modified with chloride of zirconium oxide, React. Kinet. Mech. Catal., 1 (2017) 635–653.
  20. A. Benomara, F. Guenfoud, M. Mokhtari, Removal of methyl violet 2B by FePO4 as photocatalyst, React. Kinet. Mech. Catal., 127 (2019) 1087–1099.