References
- A.O. Adeola, Fate and toxicity of chlorinated phenols of
environmental implications: a review, Med. Anal. Chem. Int. J.,
2 (2018), doi: 10.23880/macij-16000126.
- G.Z. Li, S.J. Park, D.-W. Kang, R. Krajmalnik-Brown,
B.E. Rittmann, 2,4,5-trichlorophenol degradation using a novel
TiO2-coated biofilm carrier: roles of adsorption, photocatalysis,
and biodegradation, Environ. Sci. Technol., 45 (2011) 8359–8367.
- A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related
derivatives of environmental concern: properties, distribution
and microbial degradation processes, Chemosphere, 83 (2011)
1297–1306.
- N. Takahashi, T. Nakai, Y. Satoh, Y. Katoh, Variation of biodegradability
of nitrogenous organic compounds by ozonation,
Water Res., 28 (1994) 1563–1570.
- A.M. Abeish, H.M. Ang, H. Znad, Solar photocatalytic
degradation of chlorophenols mixture (4-CP and 2,4-DCP):
mechanism and kinetic modelling, J. Environ. Sci. Health. Part
A Toxic/Hazard. Subst. Environ. Eng., 50 (2015) 125–134.
- T.I. Poznyak, I.C. Oria, A.S. Poznyak, Ozonation and
Biodegradation in Environmental Engineering: Dynamic Neural
Network Approach, Elsevier, Amsterdam, The Netherlands,
2019.
- N.K. Temel, M. Sökmen, New catalyst systems for the
degradation of chlorophenols, Desalination, 281 (2011) 209–214.
- R. Saravanan, F. Gracia, A. Stephen, Nanocomposites for
Visible Light-induced Photocatalysis, M. Khan, D. Pradhan,
Y. Sohn, Eds., Basic Principles, Mechanism, and Challenges
of Photocatalysis, Springer Series on Polymer and Composite
Materials, Springer, Cham, 2017, pp. 19–41.
- J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang,
Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2
photocatalysis: mechanisms and materials, J. Am. Chem. Soc.,
114 (2014) 9919–9986.
- S. Sakthivel, H. Kisch, Daylight photocatalysis by carbonmodified
titanium dioxide, Angew. Chem. Int. Ed., 42 (2003)
4908–4911.
- H. Saleem, A. Habib, Study of band gap reduction of TiO2 thin
films with variation in GO contents and use of TiO2/graphene
composite in hybrid solar cell, J. Alloys Compd., 679 (2016)
177–183.
- Y. Mahmiani, A.M. Sevim, A. Gül, Photocatalytic degradation
of 4-chlorophenol under visible light by using TiO2 catalysts
impregnated with Co(II) and Zn(II) phthalocyanine derivatives,
J. Photochem. Photobiol., A, 321 (2016) 24–32.
- N.S. Allen, N. Mahdjoub, V. Vishnyakov, P.J. Kelly, R.J. Kriek,
The effect of crystalline phase (anatase, brookite and rutile)
and size on the photocatalytic activity of calcined polymorphic
titanium dioxide (TiO2), Polym. Degrad. Stab., 150 (2018) 31–36.
- K. Fischer, A. Gawel, D. Rosen, M. Krause, A.A. Latif, J. Griebel,
A. Prager, A. Schulze, Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane
for photocatalysis, Catalysts, 7 (2017) 1–14, doi: 10.3390/
catal7070209.
- A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis:
recent advances and applications, Catalysts, 3 (2013) 189–218.
- G. Waldner, M. Pourmodjib, R. Bauer, M. Neumann-Spallart,
Photoelectrocatalytic degradation of 4-chlorophenol and oxalic
acid on titanium dioxide electrodes, Chemosphere, 50 (2003)
989–998.
- O. Avilés-García, J. Espino-Valencia, R. Romero, J.L. Rico-Cerda,
R. Natividad, Oxidation of 4-chlorophenol by mesoporous
titania: effect of surface morphological characteristics, Int. J.
Photoenergy, 2014 (2014), https://doi.org/10.1155/2014/210751.
- X.Y. Li, Y. Hou, Q.D. Zhao, W. Teng, X.J. Hu, G.H. Chen,
Capability of novel ZnFe2O4 nanotube arrays for visiblelight
induced degradation of 4-chlorophenol, Chemosphere,
82 (2011) 581–586.
- M.Q. Hu, Y.M. Xu, Visible light induced degradation of
chlorophenols in the presence of H2O2 and iron substituted
polyoxotungstate, Chem. Eng. J., 246 (2014) 299–305.
- A.B. Lavand, Y.S. Malghe, Visible light photocatalytic degradation
of 4-chlorophenol using C/ZnO/CdS nanocomposite,
J. Saudi Chem. Soc., 19 (2015) 471–478.
- K.A. Mcdonnell, N. Wadnerkar, N.J. English, M. Rahman,
D. Dowling, Photo-active and optical properties of bismuth
ferrite (BiFeO3): an experimental and theoretical study, Chem.
Phys. Lett., 572 (2013) 78–84.
- T. Gao, Z. Chen, Q.L. Huang, F. Niu, X.N. Huang,
L.S. Qin, Y.X. Huang, A review: preparation of bismuth ferrite
nanoparticles and its applications in visible-light induced
photocatalyses, Rev. Adv. Mater. Sci., 40 (2015) 97–109.
- T. Tong, H. Zhang, J.G. Chen, D.R. Jin, J.R. Cheng,
The photocatalysis of BiFeO3 disks under visible light
irradiation, Catal. Commun., 87 (2016) 23–26.
- F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu,
Z.G. Zou, J.-M. Liu, Visible-light photocatalytic properties of
weak magnetic BiFeO3 nanoparticles, Adv. Mater., 19 (2007)
2889–2892.
- N.A. Lomanova, V.V. Gusarov, Influence of synthesis
temperature on BiFeO3 nanoparticles formation, Nanosyst.
Phys. Chem. Math., 4 (2013) 696–705.
- C. Masingboon, S. Maensiri, Synthesize, characterization
and magnetic properties of nanoparticle bismuth ferrite
(BiFeO3) prepared by a simple sol–gel route using egg white,
Ferroelectrics, 457 (2013) 89–96.
- M. Sivagnanavelmurugan, S. Radhakrishnan, A. Palavesam,
V. Arul, G. Immanuel, Characterization of alginic acid
extracted from Sargassum wightii and determination of its
antiviral activity on shrimp Penaeus monodon postlarvae against
white spot syndrome virus, Int. J. Curr. Res. Life Sci., 7 (2018)
1863–1872.
- H.A.M. Azmy, N.A. Razuki, A.W. Aziz, N.S.A. Satar,
N.H.M. Kaus, Visible light photocatalytic activity of BiFeO3
nanoparticles for degradation of methylene blue, J. Phys. Sci.,
28 (2017) 85–103.
- N.A. Yusoff, L.-N. Ho, S.-A. Ong, Y.-S. Wong, W.F. Khalik,
M.F. Ridzwan, Enhanced photodegradation of phenol by
ZnO nanoparticles synthesized through sol–gel method, Sains
Malaysiana, 46 (2017) 2507–2514.
- X.F. Bai, J. Wei, B. Tian, Y. Liu, T. Reiss, N. Guiblin, P. Gemeiner,
B. Dkhil, I.C. Infante, Size effect on optical and photocatalytic
properties in BiFeO3 nanoparticles, J. Phys. Chem. C, 120 (2016)
3595–3601.
- M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff,
K. Sopian, Photocatalytic degradation of chlorophenols under
direct solar radiation in the presence of ZnO catalyst, Res.
Chem. Intermed., 39 (2013) 1981–1996.
- N.S. Abdul Satar, R. Adnan, H.L. Lee, S.R. Hall, T. Kobayashi,
M.H.M. Kassim, N.H.M. Kaus, Facile green synthesis of
ytrium-doped BiFeO3 with highly efficient photocatalytic
degradation towards methylene blue, Ceram. Int., 45 (2019)
15964–15973.
- X.J. Li, J.W. Cubbage, W.S. Jenks, Photocatalytic degradation of
4-chlorophenol. 2. The 4-chlorocatechol pathway, The J. Org.
Chem., 64 (1999) 8525–8536.
- H. Bel Hadjltaief, A. Sdiri, M.E. Gálvez, H. Zidi, P. Da Costa,
M. Ben Zina, Natural hematite and siderite as heterogeneous
catalysts for an effective degradation of 4-chlorophenol via
photo-Fenton process, Chem. Eng., 2 (2018) 29.
- Y.A. Mustafa, A.H. Shihab, Removal of 4-chlorophenol from
wastewater using a pilot-scale advanced oxidation process,
Desal. Water Treat., 51 (2013) 6663–6675.
- C. Catrinescu, D. Arsene, P. Apopei, C. Teodosiu, Degradation
of 4-chlorophenol from wastewater through heterogeneous
Fenton and photo-Fenton process, catalyzed by Al–Fe PILC,
Appl. Clay Sci., 58 (2012) 96–101.
- J. Zhang, G. Zhang, Q.H. Ji, H.C. Lan, J.H. Qu, H.J. Liu, Carbon
nanodot-modified FeOCl for photo-assisted Fenton reaction
featuring synergistic in-situ H2O2 production and activation,
Appl. Catal., B, 266 (2020) 118665.