References

  1. R.K. Rowe, Y. Yu, Clogging of finger drain systems in msw landfills, Waste Manage., 32 (2012) 2342–2352.
  2. Y. Long, J. Xu, D. Shen, Y. Du, H. Feng, Effective removal of contaminants in landfill leachate membrane concentrates by coagulation, Chemosphere, 167 (2017) 512–519.
  3. H. Wang, X. Li, Z. Hao, Y. Sun, Y. Wang, W. Li, Y.F. Tsang, Transformation of dissolved organic matter in concentrated leachate from nanofiltration during ozone-based oxidation processes (O3, O3/H2O2 and O3/UV), J. Environ. Manage., 191 (2017) 244–251.
  4. R. He, B.H. Tian, Q.Q. Zhang, H.T. Zhang, Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process, Waste Manage., 38 (2015) 232–239.
  5. Q.Q. Zhang, B.H. Tian, X. Zhang, A. Ghulam, C.R. Fang, R. He, Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants, Waste Manage., 33 (2013) 2277–2286.
  6. B.O. Clarke, T. Anumol, M. Barlaz, S.A. Snyder, Investigating landfill leachate as a source of trace organic pollutants, Chemosphere, 127 (2015) 269–275.
  7. H. Zhang, D. Zhang, J. Zhou, Removal of COD from landfill leachate by electro-Fenton method, J. Hazard. Mater., 135 (2006) 106–111.
  8. Q. Liu, X. Zhang, Y. Zhou, A. Zhao, S. Chen, G. Qian, Z.P. Xu, Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement, Bioresour. Technol., 102 (2011) 8661–8668.
  9. S.Y. Hunce, D. Akgul, G. Demir, B. Mertoglu, Solidification/stabilization of landfill leachate concentrate using different aggregate materials, Waste Manage., 32 (2012) 1394–1400.
  10. X.Y. Li, L.W. Zhang, C.W. Wang, Review of disposal of concentrate streams from nanofiltration (NF) or reverse osmosis (RO) membrane process, Adv. Mater. Res., 518–523 (2012) 3470–3475.
  11. Q.Y. Wan, Y.L. Zhang, J.B. Lin, Catalyst activity on landfill leachate treatment with CWAO method, Appl. Mechanics Mater., 467 (2014) 127–132.
  12. X. Qi, C. Zhang, Y. Zhang, Treatment of Landfill Leachate RO Concentrate by VMD, International Conference on Circuits and Systems (CAS 2015).
  13. Y. Deng, J.D. Englehardt, Treatment of landfill leachate by the Fenton process, Water Res., 40 (2006) 3683–3694.
  14. Y. Deng, C.M. Ezyske, Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate, Water Res., 45 (2011) 6189–6194.
  15. T.T. Asha, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Treatment of stabilized leachate by ferrous-activated persulfate oxidative system, J. Hazard. Toxic Radioact. Waste, 21 (2017) 04016012–1-6.
  16. A. Ghauch, A.M. Tuqan, N. Kibbi, Naproxen abatement by thermally activated persulfate in aqueous systems, Chem. Eng. J., 279 (2015) 861–873.
  17. B. Ranc, P. Faure, V. Croze, M.O. Simonnot, Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review, J. Hazard. Mater., 312 (2016) 280–297.
  18. S. Luo, L.W. Gao, Z.S. Wei, R. Spinney, D.D. Dionysiou, W.P. Hu, L.Y. Chai, R.Y. Xiao, Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates, Water Res., 137 (2018) 233–241.
  19. H. Chi, Z. Wang, X. He, J. Zhang, D. Wang, J. Ma, Activation of peroxymonosulfate system by copper-based catalyst for degradation of naproxen: mechanisms and pathways, Chemosphere, 228 (2019) 54–64.
  20. J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
  21. L.J. Bu, S.M. Zhu, S.Q. Zhou, Degradation of atrazine by electrochemically activated persulfate using BDD anode: role of radicals and influencing factors, Chemosphere, 195 (2018) 236–244.
  22. D.H. Ding, C. Liu, Y.F. Ji, Q. Yang, L.L. Chen, C.L. Jiang, T.M. Cai, Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway, Chem. Eng. J., 308 (2017) 330–339.
  23. J. Deng, M. Xua, Y. Chena, J. Lic, C. Qiua, X. Lid, S. Zhoue, Highly-efficient removal of norfloxacin with nanoscale zerovalent copper activated persulfate at mild temperature, Chem. Eng. J., 366 (2019) 491–503.
  24. S.R. Rastogi, D.D. Ai-Abed, Dionysiou, Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal., B, Environ., 85 (2009) 171–179.
  25. P. Zhou, J. Zhang, J. Liu, Y. Zhang, J. Liang, Y. Liu, B. Liu, W. Zhang, Degradation of organic contaminants by activated persulfate using zero valent copper in acidic aqueous conditions, R. Soc. Chem. Adv., 6 (2016) 99532–99539.
  26. S.Q. Zhou, Y.H. Yu, J.L. Sun, S.M. Zhu, J. Deng, Oxidation of microcystin-LR by copper coupled with ascorbic acid: kinetic modeling towards generation of H2O2, Chem. Eng. J., 333 (2018) 443–450.
  27. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55 (2004) 1213–1223.
  28. Z. Xu, C. Shan, B. Xie, Y. Liu, B. Pan, Decomplexation of Cu(II)-EDTA by UV/persulfate and UV/H2O2: efficiency and mechanism, Appl. Catal., B, 200 (2017) 439–447.
  29. G. Barzegar, S. Jorfi, V. Zarezade, M. Khatebasreh, F. Mehdipour, F. Ghanbari, 4-Chlorophenol degradation using ultrasound/ peroxymonosulfate/nanoscale zero valent iron: reusability, identification of degradation intermediates and potential application for real wastewater, Chemosphere, 201 (2018) 370–379.
  30. L. Chen, C. Lei, Z. Li, B. Yang, X. Zhang, L. Lei, Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants, Chemosphere, 210 (2018) 516–523.
  31. H. Song, L. Yan, J. Jiang, J. Ma, S. Pang, X. Zhai, W. Zhang, D. Li, Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes, Chem. Eng. J., 344 (2018) 12–20.
  32. H. Liu, T.A. Bruton, W. Li, J.V. Buren, C. Prasse, F.M. Doyle, D.L. Sedlak, Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)- containing oxides: stoichiometric efficiency and transformation products, Environ. Sci. Technol., 50 (2016) 890–898.
  33. I. Hussain, Y. Zhang, S. Huang, X. Du, Degradation of p-chloroaniline bypersulfate activated with zero-valent iron, Chem. Eng. J., 203 (2012) 269–276.
  34. X.L. Zou, T. Zhou, J. Mao, X.H. Wu, Synergistic degradation of antibioticsulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system, Chem. Eng. J., 257 (2014) 36–44.
  35. G.D. Fang, D.D. Dionysiou, S.R. Al-Abed, D.M. Zhou, Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs, Appl. Catal., B, 129 (2013) 325–332.
  36. Y. Segura, F. Martinez, J.A. Melero, J.L.G. Fierro, Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: treatment performance and characterization of final composites, Chem. Eng. J., 269 (2015) 298–305.
  37. X. Zhou, W. Jin, H. Chen, C. Chen, S. Han, R. Tu, W. Wei, S.H. Gao, G.J. Xie, Q. Wang, Enhancing dewaterability of waste activated sludge by combined oxidative conditioning process with zero-valent iron and peroxymonosulfate, Water Sci. Technol., 76 (2017) 2427–2433.
  38. X.Y. Ma, Y.Q. Cheng, Y.J. Ge, H.D. Wu, Q.S. Li, N.Y. Gao, J. Deng, Ultrasound enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin, Ultrason. Sonochem., 40 (2018) 763–772.
  39. Y.F. Zhang, J.H. Fan, B. Yang, W.T. Huang, L.M. Ma, Coppercatalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: the mechanism and superoxide mediated cycling of copper species, Chemosphere, 166 (2017) 89–95.
  40. S. Jorfi, S. Pourfadakari, M. Ahmadi, H. Akbari, Thermally activated persulfate treatment and mineralization of a recalcitrant high TDS petrochemical wastewater, Pol. J. Chem. Technol., 19 (2017) 72–77.
  41. Z.G. Rahmata, M. Ahmadic, Activation of persulfate by Fe2+ for saline recalcitrant petrochemical wastewater treatment: intermediates identification and kinetic study, Desal. Water Treat., 166 (2019) 35–43.
  42. M. Ahmadia, N.J. Haghighifarda, R.D.C. Soltanic, M. Tobeishib, S. Jorfia, Treatment of a saline petrochemical wastewater containing recalcitrant organics using electro-Fenton process: persulfate and ultrasonic intensification, Desal. Water Treat., 169 (2019) 241–250.
  43. A.H. Hilles, S.S.A. Amr, R.A. Hussein, O.D. El-Sebaie, A.I. Arafa, Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment, J. Environ. Manage., 166 (2016) 493–498.
  44. A.R. Ishak, F.S. Hamid, S. Mohamad, K.S. Tay, Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process, Waste Manage., 76 (2018) 575–581.
  45. C. Chen, H. Feng, Y. Deng, Re-evaluation of sulfate radical based–advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate, Water Res., 153 (2019) 100–107.
  46. J. Antony, S.V. Niveditha, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process, Waste Manage., 106 (2020) 1–11.
  47. M.S. Bhatti, D. Kapoor, R.K. Kalia, A.S. Reddy, A.K. Thukral, RSM and ANN modeling for electrocoagulation of copper from simulated waste water: multi objective optimization using genetic algorithm approach, Desalination, 274 (2011) 74–80.
  48. P. Tripathi, V.C. Srivastava, A. Kumar, Optimization of an azo dye batch adsorption parameters using Box–Behnken design, Desalination, 249 (2009) 1273–1279.
  49. R. Gottipati, S. Mishra, Process optimization of adsorption of Cr(VI) on activated carbons prepared from plant precursors by a two-level full factorial design, Chem. Eng. J., 160 (2010) 99–107.
  50. S. Bajpaia, S.K. Guptab, A. Deyc, M.K. Jhaa, V. Bajpaia, S. Joshi, A. Gup, Application of Central Composite Design approach for removal of chromium(VI) from aqueous solution using weakly anionic resin: modeling, optimization and study of interactive variables, J. Hazard. Mater., 227–228 (2012) 436–444.
  51. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, 2005.
  52. S. Singh, J.P. Chakraborty, M.K. Mondal, Optimization of process parameters for torrefaction of Acacia nilotica using response surface methodology and characteristics of torrefied biomass as upgraded fuel, Energy, 186 (2019) 115865.
  53. M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah, M. Mehranian, Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation, J. Hazard. Mater., 123 (2005) 187–195.
  54. Q. Beg, V. Sahai, R. Gupta, Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor, Process Biochem., 39 (2003) 203–209.
  55. Y. Rostamiyan, A. Fereidoon, A.H. Mashhadzadeh, M.R. Ashtiyani, A. Salmankhani, Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite, Composites, Part B, 69 (2015) 304–316.
  56. H. Li, S. Zhou, Y. Sun, J. Lv, Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent, Waste Manage., 30 (2010) 2122–2129.
  57. A.A.L. Zinatizadeh, A.R. Mohamed, A.Z. Abdullah, M.D. Mashitah, I.M. Hasnain, G.D. Najafpour, Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge mixed film bioreactor using response surface methodology (RSM), Water Res., 40 (2006) 3193–3208.
  58. F. Görmez, Ö. Görmez, E. Yabalak, B. Gözmen, Application of the central composite design to mineralization of olive mill wastewater by the electro/FeII/persulfate oxidation method, SN Appl. Sci., 2 (2020) 178.
  59. B. Gozmen, O. Sonmez, M. Turabik, Response surface methodology for oxidative degradation of the basic yellow 28 dye by temperature and ferrous ion activated persulfate, Asian J. Chem., 25 (2013) 6831–6839.
  60. T.F. Awolusi, O.L. Oke, O.O. Akinkurolere, A.O. Sojobi, Application of response surface methodology: predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler, Case Stud. Constr. Mater., 10 (2019) e00212.
  61. A. Babuponnusami, K. Muthukumar, Removal of phenol by heterogenous photo electro Fenton-like process using nanozero valent iron, Sep. Purif. Technol., 98 (2021) 130–135.
  62. S. Zha, Y. Cheng, Y. Gao, Z. Chen, M. Megharaj, R. Naidu, Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin, Chem. Eng. J., 255 (2014) 141–148.
  63. A.A. Burbano, D.D. Dionysiou, M.T. Suidan, T.L. Richardson, Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent, Water Res., 39 (2005) 107–118.
  64. Y. Wang, W. Chu, Photo-assisted degradation of 2, 4, 5- trichlorophenoxyacetic acid by Fe (II)-catalyzed activation of Oxone process: the role of UV irradiation, reaction mechanism and mineralization, Appl. Catal. B: Environ., 123 (2012) 151–161.
  65. B.Z. Li, L. Li, K.F. Lin, W. Zhang, S.G. Lu, Q.S. Luo, Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process, Ultrason. Sonochem., 20 (2013) 855–863.
  66. C. Cai, H. Zhang, X. Zhong, L.W. Hou, Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water, Water Res., 66 (2014) 473–485.
  67. T. Zhang, Y. Yang, X. Li, H. Yu, N. Wang, H. Li, P. Du, Y. Jiang, X. Fan, Z. Zhou, Degradation of sulfamethazine by persulfate activated with nanosized zerovalent copper in combination with ultrasonic irradiation, Sep. Purif. Technol., 239 (2020) 116537.
  68. F. Ghanbari, M. Moradi, M. Manshouri, Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper, J. Environ. Chem. Eng., 2 (2014) 1846–1851.
  69. A.A. Babaei, F. Ghanbari, COD removal from petrochemical wastewater by UV/hydrogen peroxide, UV/persulfate and UV/percarbonate: biodegradability improvement and cost evaluation, J. Water Reuse Desal., 6 (2016) 484–494.
  70. A.R. Zarei, H. Rezaeivahidian, A.R. Soleymani, Mineralization of unsymmetrical dimethylhydrazine (UDMH) via persulfate activated by zero valent iron nano particles: modeling, optimization and cost estimation, Desal. Water Treat., 57 (2016) 16119–16128.
  71. Y.C. Chou, S.L. Lo, J. Kuo, C.J. Yeh, Microwave-enhanced persulfate oxidation to treat mature landfill leachate, J. Hazard. Mater., 284 (2015) 83–91.
  72. A.R. Soleymani, M. Moradi, Performance and modeling of UV/ persulfate/Ce(IV) process as a dual oxidant photochemical treatment system: kinetic study and operating cost estimation, Chem. Eng. J., 347 (2018) 243–251.
  73. N. Genç, E. Durna, H.K. Kayapinar Cicigün, Response Surface Modeling and Optimization of Microwave‐Activated Persulfate Oxidation of Olive Oil Mill Wastewater, CLEAN–Soil Air Water, 48 (2020) 1900198.
  74. G. Varank, S. Yazici Guvenc, K. Dincer, A. Demir, Concentrated Leachate Treatment by Electro-Fenton and Electro-Persulfate Processes Using Central Composite Design, Int. J. Environ. Res., 14 (2020) 439–461.
  75. N. Genç, E. Durna, Simultaneous optimization of treatment efficiency and operating cost in leachate concentrate degradation by thermal-activated persulfate catalysed with Ag (I): comparison of microwave and conventional heating, J. Microwave Power Electromagn. Energy, 53 (2019) 155–170.
  76. A.H. Hilles, S.S.A. Amr, R.A. Hussein, A.I. Arafa, O.D. El-Sebaie, Effect of persulfate and persulfate/H2O2 on biodegradability of an anaerobic stabilized landfill leachate, Waste Manage., 44 (2015) 172–177.
  77. B.K. Tripathy, M. Kumar, Sequential coagulation/flocculation and microwave-persulfate processes for landfill leachate treatment: assessment of bio-toxicity, effect of pretreatment and cost-analysis, Waste Manage., 85 (2019) 18–29.