References

  1. R. Hirsch, T. Ternes, K. Haberer, K.L. Kratz, Occurrence of antibiotics in the aquatic environment, Sci. Total Environ., 225 (1999) 109–118.
  2. L. Wu, Y. Song, M. Hu, X. Xu, H. Zhang, A. Yu, Q. Ma, Z. Wang, Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction highperformance liquid chromatography, Anal. Bioanal. Chem., 407 (2015) 569–580.
  3. A.V. Herrera-Herrera, J. Hernández-Borges, M.M. Afonso, J.A. Palenzuela, M.Á. Rodríguez-Delgado, Comparison between magnetic and non magnetic multi-walled carbon nanotubesdispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples, Talanta, 116 (2013) 695–703.
  4. J. Wang, M. Gao, F. Ding, T. Shen, Organo-vermiculites modified by heating and gemini pyridinium surfactants: preparation, characterization and sulfamethoxazole adsorption, Colloids Surf., A, 546 (2018) 143–152.
  5. K. Chen, L. Liu, W. Chen, Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils, Environ. Pollut., 231 (2017) 1163–1171.
  6. L. Gao, Y. Shi, W. Li, H. Niu, J. Liu, Y. Cai, Occurrence of antibiotics in eight sewage treatment plants in Beijing, China, Chemosphere, 86 (2012) 665–671.
  7. J. Du, H. Zhao, S. Liu, H. Xie, Y. Wang, J. Chen, Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks, Sci. Total Environ., 595 (2017) 521–527.
  8. T. Wang, S. Ai, Y. Zhou, Z. Luo, C. Dai, Y. Yang, J. Zhang, H. Huang, S. Luo, L. Luo, Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles, J. Environ. Chem. Eng., 6 (2018) 6468–6478.
  9. L.P. Bao, C.O. Chong, S.M.S. Mohamed, S. Pau-Loke, C. Jo-Shu, C.L. Tau, S.L. Su, C.J. Joon, Conventional and emerging technologies for removal of antibiotics from wastewater, J. Hazard. Mater., 400 (2020) 122961, doi: 10.1016/j.jhazmat.2020. 122961.
  10. L. Clarizia, D. Russo, I. Di Somma, R. Marotta, R. Andreozzi, Homogeneous photo-Fenton processes at near neutral pH: A review, Appl. Catal., B, 209 (2017) 358–371.
  11. N. López, S. Plaza, A. Afkhami, P. Marco, J. Giménez, S. Esplugas, Treatment of diphenhydramine with different AOPs including photo-Fenton at circumneutral pH, Chem. Eng. J., 318 (2017) 112–120.
  12. R. Zhang, Y. Yang, C. Huang, L. Zhao, P. Sun, Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 and UV/PDS, Water Res., 103 (2016) 283–292.
  13. P. Gong, H. Yuan, P. Zhai, Y. Xue, H. Li, W. Dong, G. Mailhot, Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution, Chem. Eng. J., 277 (2015) 97–103.
  14. J. Tang, J. Wang, Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst, Chem. Eng. J., 351 (2018) 1085–1094.
  15. Z. Xiu, Y. Cao, Z. Xing, T. Zhao, Z. Li, W. Zhou, Wide spectral response photothermal catalysis-fenton coupling systems with 3D hierarchical Fe3O4/Ag/Bi2MoO6 ternary heterosuperstructural magnetic microspheres for efficient hightoxic organic pollutants removal, J. Colloid Interface Sci., 533 (2019) 24–33.
  16. G.B. Ortiz De La Plata, O.M. Alfano, A.E. Cassano, Decomposition of 2-chlorophenol employing goethite as Fenton catalyst II: reaction kinetics of the heterogeneous Fenton and photo-Fenton mechanisms, Appl. Catal., B, 95 (2010) 14–25.
  17. J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process, Angew. Chem., Int. Ed., 45 (2006) 6962–6984.
  18. D. Kim, K.K. Sakimoto, D. Hong, P. Yang, Artificial photosynthesis for sustainable fuel and chemical production, Angew. Chem., Int. Ed., 54 (2015) 3259–3266.
  19. X. Gong, Z. Yang, L. Peng, A. Zhou, Y. Liu, Y. Liu, In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system, J. Power Sources, 378 (2018) 190–197.
  20. N. Tan, Z. Yang, X. Gong, Z. Wang, T. Fu, Y. Liu, In situ generation of H2O2 using MWCNT-Al/O2 system and possible application for glyphosate degradation, Sci. Total Environ., 650 (2019) 2567–2576.
  21. Z. Qiang, J. Chang, C. Huang, Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions, Water Res., 36 (2002) 85–94.
  22. S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E.A. Paoli, R. Frydendal, T.W. Hansen, I. Chorkendorff, I.E.L. Stephens, J. Rossmeisl, Enabling direct H2O2 production through rational electrocatalyst design, Nat. Mater., 12 (2013) 1137–1143.
  23. S. Yuan, Y. Fan, Y. Zhang, M. Tong, P. Liao, Pd-Catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-Fenton degradation of Rhodamine B, Environ. Sci. Technol., 45 (2011) 8514–8520.
  24. B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V.K. Gupta, S. Harikaranahalli Puttaiah, N. Marzban, Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems, Chem. Eng. J., 346 (2018) 258–270.
  25. G. Asgari, A. Seidmohammadi, J. Faradmal, A. Esrafili, M. Noori Sepehr, M. Jafarinia, Optimization of synthesis a new composite of nano-MgO, CNT and graphite as a catalyst in heterogeneous catalytic ozonation for the treatment of pesticide-laden wastewater, J. Water Process Eng., 33 (2020) 101082, doi: 10.1016/j.jwpe.2019.101082.
  26. Q. Zhou, X. Lin, B. Li, X. Luo, Fluoride adsorption from aqueous solution by aluminum alginate particles prepared via electrostatic spinning device, Chem. Eng. J., 256 (2014) 306–315.
  27. N. Nasseh, B. Barikbin, L. Taghavi, M.A. Nasseri, Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies), Composites, Part B, 159 (2019) 146–156.
  28. D. Mohan, V.K. Gupta, S.K. Srivastava, S. Chander, Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste, Colloids Surf., A, 177 (2001) 169–181.
  29. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq., 273 (2019) 425–434.
  30. Y.Y. Sun, Q.Y. Yue, B.Y. Gao, Q.L, L.H. Huang, F.J. Yao, X. Xu, Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption, J. Colloid Interface Sci., 368 (2012) 521–527.
  31. Y. Lin, D. Li, J. Hu, G. Xiao, X. Fu, Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite, J. Phys. Chem. C, 116 (2012) 5764–5772.
  32. Y. Liu, Q. Fan, S.X. Wang, Y. Liu, A.L. Zhou, L. Fan, Adsorptive removal of fluoride from aqueous solutions using Al-humic acid-La aerogel composites, Chem. Eng. J., 306 (2016) 174–185.
  33. A.A.M. Daifullah, B.S. Girgis, Impact of surface characteristics of activated carbon on adsorption of BTEX, Colloids Surf., A, 214 (2003) 181–193.
  34. H.K. Moghaddam, M. Pakizeh, Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent, Ind. Eng. Chem., 21 (2015) 221–229.
  35. M.F.R. Pereira, S.F. Soares, J.J.M. Órfão, J.L. Figueiredo, Adsorption of dyes on activated carbons: influence of surface chemical groups, Carbon, 41 (2003) 811–821.
  36. Y.B. Liu, N. Tan, B.Q. Wang, Y. Liu, Stepwise adsorption– oxidation removal of oxytetracycline by Zn0-CNTs-Fe3O4 from aqueous solution, Chem. Eng. J., 375 (2019) 121963, doi: 10.1016/j.cej.2019.121963.
  37. C. Lu, F. Su, Adsorption of natural organic matter by carbon nanotubes, Sep. Purif. Technol., 58 (2007) 113–121.
  38. S.G. Wang, X.W. Liu, W.X. Gong, N. Wei, B.Y. Gao, Q.Y. Yue, Adsorption of fulvic acids from aqueous solutions by carbon nanotubes, J. Chem. Technol. Biotechnol., 82 (2010) 698–704.
  39. H. Hoon, K. Jae-Hong, Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters, Environ. Sci. Technol., 42 (2008) 4416–4421.
  40. Q. Liao, J. Sun, L. Gao, The adsorption of resorcinol from water using multi-walled carbon nanotubes, Colloids Surf., A, 312 (2008) 160–165.
  41. H. Milh, B. Schoenaers, A. Stesmans, D. Cabooter, R. Dewil, Degradation of sulfamethoxazole by heat-activated persulfate oxidation: elucidation of the degradation mechanism and influence of process parameters, Chem. Eng. J., 379 (2020) 122234, doi: 10.1016/j.cej.2019.122234.
  42. T. Golzari Aqda, S. Behkami, M. Raoofi, H. Bagheri, Graphene oxide-starch-based micro-solid phase extraction of antibiotic residues from milk samples, J. Chromatogr. A, 1591 (2019) 7–14.
  43. H. Zhao, X. Liu, Z. Cao, Y. Zhan, X. Shi, Y. Yang, J. Zhou, J. Xu, Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multiwalled carbon nanotubes, J. Hazard. Mater., 310 (2016) 235–245.
  44. H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide, J. Hazard. Mater., 282 (2015) 201–207.
  45. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  46. L.I. Ya-Jing, X.F. Sun, Y.E. Qing, B.C. Liu, W.U. Yao-Guo, Preparation and properties of a novel hemicellulose-based magnetic hydrogel, Acta Phys. Chim. Sin., 30 (2014) 111–120.
  47. G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various pollutants from aqueous solutions on to activated carbon, Water Res., 19 (1985) 491–495.
  48. L. Wang, L. Yang, Y. Li, Y. Zhang, X. Ma, Z. Ye, Study on adsorption mechanism of Pb(II) and Cu(II) in aqueous solution using PS-EDTA resin, Chem. Eng. J., 163 (2010) 364–372.
  49. H.L. So, K.Y. Lin, W. Chu, Triclosan removal by heterogeneous Fenton-like process: studying the kinetics and surface chemistry of Fe3O4 as catalyst, J. Environ. Chem. Eng., 7 (2019) 103432, doi: 10.1016/j.jece.2019.103432.
  50. A. Tolba, M. Gar Alalm, M. Elsamadony, A. Mostafa, H. Afify, D.D. Dionysiou, Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs, Process Saf. Environ. Prot., 128 (2019) 273–283.
  51. Y. Liu, Q. Fan, J.L. Wang, Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole, J. Hazard. Mater., 342 (2017) 166–176.
  52. V.L. Pham, D.G. Kim, S.O. Ko, Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles, Sci. Total Environ., 631–632 (2018) 608–618.