References
- D. Belhaj, I. Jaabiri, N. Turki, C. Azri, M. Kallel, H. Ayadi,
Descriptive and multivariable analysis of the water parameters
quality of Sfax sewage treatment plant after rehabilitation,
IOSR-J. Comput. Eng., 16 (2014) 81–91.
- F. Rafat Motevali, Sh. Danesh, H. Rajabi Mashhadi, Evaluation
and Management of the Performance of Semi-Mechanical
Treatment Plants by Predicting the Quality of their Output
Wastewater by Genetic Algorithm or Optimized Neural
Network Model, The 5th National Conference on Water,
Wastewater and Waste, Tehran, 2014.
- L. Zhao, T.J. Dai, Z. Qiao, P.Z. Sun, J.Y. Hao, Y.K. Yang,
Application of artificial intelligence to wastewater treatment:
a bibliometric analysis and systematic review of technology,
economy, management, and wastewater reuse, Process Saf.
Environ. Prot., 133 (2020) 169–182.
- M. Falah Nezhad, N. Mehrdadi, A. Torabian, S. Behboudian,
Artificial neural network modeling of the effluent quality
index for municipal wastewater treatment plants using quality
variables: south of Tehran wastewater treatment plant, J. Water
Supply Res. Technol., 65 (2016) 18–27.
- M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of
wastewater treatment plant performance using artificial neural
networks, Environ. Modell. Software, 19 (2004) 919–928.
- S. Heddam, H. Lamda, S. Filali, Predicting effluent biochemical
oxygen demand in a wastewater treatment plant using
generalized regression neural network based approach: a
comparative study, Environ. Process., 3 (2016) 153–165.
- K.P. Oliveira-Esquerre, D.E. Seborg, R.E. Bruns, M. Mori,
Application of steady-state and dynamic modeling for the
prediction of the BOD of an aerated lagoon at a pulp and paper
mill: Part I. Linear approaches, Chem. Eng. J., 104 (2004) 73–81.
- F.S. Mjalli, S. Al-Asheh, H.E. Alfadala, Use of artificial neural
network black-box modeling for the prediction of wastewater
treatment plants performance, J. Environ. Manage., 83 (2007)
329–338.
- A. Mehdi Pour, M. Shokuhiyan, Effect of Input Sewage
Parameters on the Estimation of the Output TSS Verification by
Using Sensitivity Analysis Based on Artificial Neural Networks,
7th Civil Engineering Congress, University of Sistan and
Baluchistan, Zahedan, 2012.
- H. Türkmenler, M. Pala, Performance assessment of advanced
biological wastewater treatment plants using artificial neural
networks, Int. J. Eng. Technol., 3 (2017) 151–156.
- M. Vyas, B. Modhera, V. Vyas, A.K. Sharma, Performance
forecasting of common effluent treatment plant parameters
by artificial neural network, ARPN J. Eng. Appl. Sci., 6 (2011)
38–42.
- H. Zare Abyaneh, M. Bayat Varkeshi, J. Bayat Varkeshi,
Application of artificial neural network in evaluating Ekbatan
wastewater treatment plant, Ecology, 3 (2012) 85–98.
- H. Zare Abyaneh, Evaluation of multivariate linear regression
and artificial neural networks in prediction of water quality
parameters, J. Environ. Health Sci. Eng., 12 (2014) 40.
- M. Hamada, H. Adel Zaqoot, A. Abu Jreiban, Application of
artificial neural networks for the prediction of Gaza wastewater
treatment plant performance-Gaza strip, J. Appl. Res. Water
Wastewater, 5 (2018) 399–406.
- O.T. Baki, E. Aras, Estimation of BOD in wastewater
treatment plant by using different ANN algorithms, Membr.
Water Treat., 9 (2018) 455–462.
- F. Fang, B.-J. Ni, W.-M. Xie, G.-P. Sheng, S.-G. Liu, Z.-H. Tong,
H.-Q. Yu, An integrated dynamic model for simulating a fullscale
municipal wastewater treatment plant under fluctuating
conditions, Chem. Eng. J., 160 (2010) 522–529.
- S. Shokri, A. Asqari Moghadam, A. Nadiri, Evaluation of
the Efficiency of Tabriz Wastewater Treatment Plant by
Using Different Fuzzy Systems, National Conference on
Environmental Research of Iran, Shahid Mofattah Faculty,
Hamedan, 2013.
- A.A. Nadiri, S. Shokri, F.T.C. Tsai, A.A. Moghaddam, Prediction
of effluent quality parameters of a wastewater treatment plant
using a supervised committee fuzzy logic model, J. Cleaner
Prod., 180 (2018) 539–549.
- G. Civelekoglu, N.O. Yigit, E. Diamadopoulos, M. Kitis,
Modelling of COD removal in a biological wastewater
treatment plant using adaptive neuro-fuzzy inference system
and artificial neural network, Water Sci. Technol., 60 (2009)
1475–1487.
- M. Vajedi, S. Shah Husseini, Active sludge process modeling
by adaptive neuro-fuzzy inference system, Water Wastewater,
4 (2014) 108–111.
- V. Nourani, G. Elkiran, S.I. Abba, Wastewater treatment plant
performance analysis using artificial intelligence–an ensemble
approach, Water Sci. Technol., 78 (2018) 2064–2076.
- S. Akilandeswari, B. Kavitha, Determination of biochemical
oxygen demand by adaptive neuro fuzzy inference system,
Adv. Appl. Sci. Res., 4 (2013) 101–104.
- M.S. Zaghloul, R.A. Hamza, O.T. Iorhemen, J.H. Tay, Comparison
of adaptive neuro-fuzzy inference systems (ANFIS) and
support vector regression (SVR) for data-driven modelling
of aerobic granular sludge reactors, J. Environ. Chem. Eng.,
8 (2020) 103742.
- M.A. Razi, K. Athappilly, A comparative predictive analysis of
neural networks (NNs), nonlinear regression and classification
and regression tree (CART) models, Expert Syst. Appl.,
29 (2005) 65–74.
- E. Dogan, B. Sengorur, R. Koklu, Modeling biological oxygen
demand of the Melen River in Turkey using an artificial neural
network technique, J. Environ. Manage., 90 (2009) 1229–1235.
- J.S.R. Jang, C.T. Sun, E. Mizutani, Neuro-fuzzy and soft
computing-a computational approach to learning and machine
intelligence, IEEE Trans. Autom. Control, 42 (1997) 1482–1484.
- H. Moral, A. Aksoy, C.F. Gokcay, Modeling of the activated
sludge process by using artificial neural networks with
automated architecture screening, Comput. Chem. Eng.,
32 (2008) 2471–2478.
- A. Solgi, F. Radmanesh, H. Zarei, V. Nourani, Hybrid models
performance assessment to predict flow of Gamasyab River, Int.
J. Adv. Biol. Biomed. Res., 2 (2014) 1837–1846.
- S. Riad, J. Mania, L. Bouchaou, Y. Najjar, Rainfall-runoff model
usingan artificial neural network approach, Math. Comput.
Modell., 40 (2004) 839–846.
- P. Fathi, Y. Muhammadi, M. Homayi, Intelligent modeling of
monthly flow time series into Vahdat dam in Sanandaj, J. Water
Soil, 23 (2009) 209–220.
- V. Nourani, M.A. Komasi, A geomorphology-based ANFIS
model for multi-station modeling of rainfall–runoff process,
J. Hydrol., 490 (2013) 41–55.
- S. Asadi, J. Shahrabi, P. Abbaszadeh, S.A. Tabanmehr, A new
hybrid artificial neural networks for rainfall–runoff process
modeling, Neurocomputing, 121 (2013) 470–480.
- N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, H.R. Abedi,
Artificial neural network modeling to predict the hot deformation
behavior of an A356 aluminum alloy, Mater. Des.,
49 (2013) 386–391.
- M. Farzadkia, M.H. Ehrampoush, S. Sadeghi, M. Kermani,
M.T. Ghaneian, V. Ghelmani, E.A. Mehriziu, Performance
evaluation of wastewater stabilization ponds in Yazd-Iran,
Environ. Health Eng. Manage. J., 1 (2014) 7–12.
- Y.J. Wong, S.K. Wong, C.H. Arumugasamy, A. Chung,
V. Selvarajoo Sethu, Comparative study of artificial neural
network (ANN), adaptive neuro-fuzzy inference system
(ANFIS) and multiple linear regression (MLR) for modeling of
Cu(II) adsorption from aqueous solution using biochar derived
from rambutan (Nephelium lappaceum) pee, Environ. Monit.
Assess., 192 (2020) 439.