References

  1. D. Belhaj, I. Jaabiri, N. Turki, C. Azri, M. Kallel, H. Ayadi, Descriptive and multivariable analysis of the water parameters quality of Sfax sewage treatment plant after rehabilitation, IOSR-J. Comput. Eng., 16 (2014) 81–91.
  2. F. Rafat Motevali, Sh. Danesh, H. Rajabi Mashhadi, Evaluation and Management of the Performance of Semi-Mechanical Treatment Plants by Predicting the Quality of their Output Wastewater by Genetic Algorithm or Optimized Neural Network Model, The 5th National Conference on Water, Wastewater and Waste, Tehran, 2014.
  3. L. Zhao, T.J. Dai, Z. Qiao, P.Z. Sun, J.Y. Hao, Y.K. Yang, Application of artificial intelligence to wastewater treatment: a bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse, Process Saf. Environ. Prot., 133 (2020) 169–182.
  4. M. Falah Nezhad, N. Mehrdadi, A. Torabian, S. Behboudian, Artificial neural network modeling of the effluent quality index for municipal wastewater treatment plants using quality variables: south of Tehran wastewater treatment plant, J. Water Supply Res. Technol., 65 (2016) 18–27.
  5. M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of wastewater treatment plant performance using artificial neural networks, Environ. Modell. Software, 19 (2004) 919–928.
  6. S. Heddam, H. Lamda, S. Filali, Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study, Environ. Process., 3 (2016) 153–165.
  7. K.P. Oliveira-Esquerre, D.E. Seborg, R.E. Bruns, M. Mori, Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill: Part I. Linear approaches, Chem. Eng. J., 104 (2004) 73–81.
  8. F.S. Mjalli, S. Al-Asheh, H.E. Alfadala, Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance, J. Environ. Manage., 83 (2007) 329–338.
  9. A. Mehdi Pour, M. Shokuhiyan, Effect of Input Sewage Parameters on the Estimation of the Output TSS Verification by Using Sensitivity Analysis Based on Artificial Neural Networks, 7th Civil Engineering Congress, University of Sistan and Baluchistan, Zahedan, 2012.
  10. H. Türkmenler, M. Pala, Performance assessment of advanced biological wastewater treatment plants using artificial neural networks, Int. J. Eng. Technol., 3 (2017) 151–156.
  11. M. Vyas, B. Modhera, V. Vyas, A.K. Sharma, Performance forecasting of common effluent treatment plant parameters by artificial neural network, ARPN J. Eng. Appl. Sci., 6 (2011) 38–42.
  12. H. Zare Abyaneh, M. Bayat Varkeshi, J. Bayat Varkeshi, Application of artificial neural network in evaluating Ekbatan wastewater treatment plant, Ecology, 3 (2012) 85–98.
  13. H. Zare Abyaneh, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters, J. Environ. Health Sci. Eng., 12 (2014) 40.
  14. M. Hamada, H. Adel Zaqoot, A. Abu Jreiban, Application of artificial neural networks for the prediction of Gaza wastewater treatment plant performance-Gaza strip, J. Appl. Res. Water Wastewater, 5 (2018) 399–406.
  15. O.T. Baki, E. Aras, Estimation of BOD in wastewater treatment plant by using different ANN algorithms, Membr. Water Treat., 9 (2018) 455–462.
  16. F. Fang, B.-J. Ni, W.-M. Xie, G.-P. Sheng, S.-G. Liu, Z.-H. Tong, H.-Q. Yu, An integrated dynamic model for simulating a fullscale municipal wastewater treatment plant under fluctuating conditions, Chem. Eng. J., 160 (2010) 522–529.
  17. S. Shokri, A. Asqari Moghadam, A. Nadiri, Evaluation of the Efficiency of Tabriz Wastewater Treatment Plant by Using Different Fuzzy Systems, National Conference on Environmental Research of Iran, Shahid Mofattah Faculty, Hamedan, 2013.
  18. A.A. Nadiri, S. Shokri, F.T.C. Tsai, A.A. Moghaddam, Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model, J. Cleaner Prod., 180 (2018) 539–549.
  19. G. Civelekoglu, N.O. Yigit, E. Diamadopoulos, M. Kitis, Modelling of COD removal in a biological wastewater treatment plant using adaptive neuro-fuzzy inference system and artificial neural network, Water Sci. Technol., 60 (2009) 1475–1487.
  20. M. Vajedi, S. Shah Husseini, Active sludge process modeling by adaptive neuro-fuzzy inference system, Water Wastewater, 4 (2014) 108–111.
  21. V. Nourani, G. Elkiran, S.I. Abba, Wastewater treatment plant performance analysis using artificial intelligence–an ensemble approach, Water Sci. Technol., 78 (2018) 2064–2076.
  22. S. Akilandeswari, B. Kavitha, Determination of biochemical oxygen demand by adaptive neuro fuzzy inference system, Adv. Appl. Sci. Res., 4 (2013) 101–104.
  23. M.S. Zaghloul, R.A. Hamza, O.T. Iorhemen, J.H. Tay, Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors, J. Environ. Chem. Eng., 8 (2020) 103742.
  24. M.A. Razi, K. Athappilly, A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models, Expert Syst. Appl., 29 (2005) 65–74.
  25. E. Dogan, B. Sengorur, R. Koklu, Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique, J. Environ. Manage., 90 (2009) 1229–1235.
  26. J.S.R. Jang, C.T. Sun, E. Mizutani, Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence, IEEE Trans. Autom. Control, 42 (1997) 1482–1484.
  27. H. Moral, A. Aksoy, C.F. Gokcay, Modeling of the activated sludge process by using artificial neural networks with automated architecture screening, Comput. Chem. Eng., 32 (2008) 2471–2478.
  28. A. Solgi, F. Radmanesh, H. Zarei, V. Nourani, Hybrid models performance assessment to predict flow of Gamasyab River, Int. J. Adv. Biol. Biomed. Res., 2 (2014) 1837–1846.
  29. S. Riad, J. Mania, L. Bouchaou, Y. Najjar, Rainfall-runoff model usingan artificial neural network approach, Math. Comput. Modell., 40 (2004) 839–846.
  30. P. Fathi, Y. Muhammadi, M. Homayi, Intelligent modeling of monthly flow time series into Vahdat dam in Sanandaj, J. Water Soil, 23 (2009) 209–220.
  31. V. Nourani, M.A. Komasi, A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process, J. Hydrol., 490 (2013) 41–55.
  32. S. Asadi, J. Shahrabi, P. Abbaszadeh, S.A. Tabanmehr, A new hybrid artificial neural networks for rainfall–runoff process modeling, Neurocomputing, 121 (2013) 470–480.
  33. N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, H.R. Abedi, Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy, Mater. Des., 49 (2013) 386–391.
  34. M. Farzadkia, M.H. Ehrampoush, S. Sadeghi, M. Kermani, M.T. Ghaneian, V. Ghelmani, E.A. Mehriziu, Performance evaluation of wastewater stabilization ponds in Yazd-Iran, Environ. Health Eng. Manage. J., 1 (2014) 7–12.
  35. Y.J. Wong, S.K. Wong, C.H. Arumugasamy, A. Chung, V. Selvarajoo Sethu, Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu(II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) pee, Environ. Monit. Assess., 192 (2020) 439.