References
- B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of
nanoparticles in the environment, Environ. Pollut., 150 (2007)
5–22.
- T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive
probabilistic modelling of environmental
emissions of engineered nanomaterials, Environ. Pollut.,
185 (2014) 69–76.
- A.A. Keller, A. Lazareva, Predicted releases of engineered
nanomaterials: from global to regional to local, Environ. Sci.
Technol., 1 (2013) 65–70.
- K. Jia, C. Sun, Y. Wang, X. Li, W. Mu, Y. Fan, Effect of TiO2
nanoparticles and multiwall carbon nanotubes on the
freshwater diatom Nitzschia frustulum: evaluation of growth,
cellular components and morphology, Chem. Ecol., 35 (2018)
69–85.
- S. Liu, P. Zeng, X. Li, D.Q. Thuyet, W. Fan, Effect of chronic
toxicity of the crystalline forms of TiO2 nanoparticles on the
physiological parameters of Daphnia magna with a focus on
index correlation analysis, Ecotoxicol. Environ. Saf., 181 (2019)
292–300.
- S. Hu, J. Han, L. Yang, S. Li, Y. Guo, B. Zhou, H. Wu, Impact
of co-exposure to titanium dioxide nanoparticles and Pb on
zebrafish embryos, Chemosphere, 233 (2019) 579–589.
- Z.G. Peng, K. Hidajat, M.S. Uddin, Adsorption of bovine
serum albumin on nanosized magnetic particles, J. Colloid
Interface Sci., 271 (2004) 277–283.
- J. Hu, G. Chen, I.M. Lo, Removal and recovery of Cr(VI)
from wastewater by maghemite nanoparticles, Water Res.,
39 (2005) 4528–4536.
- J. Lee, H.W. Walker, Adsorption of microcystin-Lr onto iron
oxide nanoparticles, Colloids Surf., A, 373 (2011) 94–100.
- Y. Zhang, Y. Chen, P. Westerhoff, J. Crittenden, Impact of natural
organic matter and divalent cations on the stability of aqueous
nanoparticles, Water Res., 43 (2009) 4249–4257.
- F. Loosli, P. Le Coustumer, S. Stoll, TiO2 nanoparticles
aggregation and disaggregation in presence of alginate and
Suwannee River humic acids pH and concentration effects on
nanoparticle stability, Water Res., 47 (2013) 6052–6063.
- D. Palomino, S. Stoll, Fulvic acids concentration and pH
influence on the stability of hematite nanoparticles in aquatic
systems, J. Nanopart. Res., 15 (2013) 1428.
- D.A. Pelletier, A.K. Suresh, G.A. Holton, C.K. McKeown,
W. Wang, B. Gu, N.P. Mortensen, D.P. Allison, D.C. Joy,
M.R. Allison, S.D. Brown, T.J. Phelps, M.J. Doktycz, Effects of
engineered cerium oxide nanoparticles on bacterial growth
and viability, Appl. Environ. Microbiol., 76 (2010) 7981–7989.
- P.S. Li M, Jin X, Mädler L, Damoiseaux R, Hoek EM, Stability,
bioavailability, and bacterial toxicity of ZnO and iron-doped
ZnO nanoparticles in aquatic media, Environ. Sci. Technol.,
45 (2011) 755–761.
- A.A. Keller, S. McFerran, A. Lazareva, S. Suh, Global life
cycle releases of engineered nanomaterials, J. Nanopart. Res.,
15 (2013) 1692.
- A.A. Keller, H. Wang, D. Zhou, H.S. Lenihan, G. Cherr,
B.J. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal
oxide nanoparticles in natural aqueous matrices, Environ.
Sci. Technol., 44 (2010) 1962–1967.
- H.N. Kim, S.L. Walker, Escherichia coli O157:H7 transport
in saturated porous media: role of solution chemistry and
surface macromolecules, Environ. Sci. Technol., 43 (2009)
4340–4347.
- B.J. Thio, D. Zhou, A.A. Keller, Influence of natural organic
matter on the aggregation and deposition of titanium dioxide
nanoparticles, J. Hazard. Mater., 189 (2011) 556–563.
- M.B. Romanello, M.M. Fidalgo de Cortalezzi, An experimental
study on the aggregation of TiO2 nanoparticles under
environmentally relevant conditions, Water Res., 47 (2013)
3887–3898.
- Y. Li, C. Yang, X. Guo, Z. Dang, X. Li, Q. Zhang, Effects of
humic acids on the aggregation and sorption of nano-TiO2,
Chemosphere, 119 (2015) 171–176.
- A. Sheng, F. Liu, N. Xie, J. Liu, Impact of proteins on aggregation
kinetics and adsorption ability of hematite nanoparticles
in aqueous dispersions, Environ. Sci. Technol., 50 (2016)
2228–2235.
- A. Omoike, J. Chorover, Spectroscopic study of extracellular
polymeric substances from Bacillus subtilis: aqueous chemistry
and adsorption effects, Biomacromolecules, 5 (2004) 1219–1230.
- F. Loosli, P. Le Coustumer, S. Stoll, Effect of electrolyte valency,
alginate concentration and pH on engineered TiO2 nanoparticle
stability in aqueous solution, Sci. Total Environ., 535 (2015)
28–34.
- B. Cao, L. Shi, R.N. Brown, Y. Xiong, J.K. Fredrickson,
M.F. Romine, M.J. Marshall, M.S. Lipton, H. Beyenal,
Extracellular polymeric substances from Shewanella sp. HRCR-1
biofilms: characterization by infrared spectroscopy and
proteomics, Environ. Microbiol., 13 (2011) 1018–1031.
- A. Omoike, J. Chorover, Adsorption to goethite of extracellular
polymeric substances from Bacillus subtilis, Geochim.
Cosmochim.,
70 (2006) 827–838.
- A.S. Adeleye, A.A. Keller, Long-term colloidal stability and
metal leaching of single wall carbon nanotubes: effect of
temperature and extracellular polymeric substances, Water
Res., 49 (2014) 236–250.
- H. Xu, H. Jiang, Effects of cyanobacterial extracellular
polymeric substances on the stability of ZnO nanoparticles in
eutrophic shallow lakes, Environ. Pollut., 197 (2015) 231–239.
- A. Kroll, R. Behra, R. Kaegi, L. Sigg, Extracellular polymeric
substances (EPS) of freshwater biofilms stabilize and modify
CeO2 and Ag nanoparticles, PLoS One, 9 (2014) e110709.
- D.C. Huram, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer,
Explaining the enhanced photocatalytic activity of degussa
P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B, 107 (2003)
4545–4549.
- L.Y. Ren, Z.N. Hong, W. Qian, J.Y. Li, R.K. Xu, Adsorption
mechanism of extracellular polymeric substances from two
bacteria on ultisol and alfisol, Environ. Pollut., 237 (2018)
39–49.
- D. Lin, S. Drew Story, S.L. Walker, Q. Huang, P. Cai, Influence of
extracellular polymeric substances on the aggregation kinetics
of TiO2 nanoparticles, Water Res., 104 (2016) 381–388.
- K.L. Chen, M. Elimelech, Aggregation and deposition
kinetics of fullerene (C60) nanoparticles, Langmuir, 26 (2006)
10994–11001.
- K.L. Chen, M. Elimelech, Influence of humic acid on the
aggregation kinetics of fullerene (C60) nanoparticles in
monovalent and divalent electrolyte solutions, J. Colloid
Interface Sci., 309 (2007) 126–134.
- X. Huangfu, J. Jiang, J. Ma, Y. Liu, J. Yang, Aggregation kinetics
of manganese dioxide colloids in aqueous solution: influence
of humic substances and biomacromolecules, Environ. Sci.
Technol., 47 (2013) 10285–10292.
- M. Hudlikar, S. Joglekar, M. Dhaygude, K. Kodam, Green
synthesis of TiO2 nanoparticles by using aqueous extract of
Jatropha curcas L. latex, Mater. Lett., 75 (2012) 196–199.
- G.V. Khade, M.B. Suwarnkar, N.L. Gavade, K.M. Garadkar,
Green synthesis of TiO2 and its photocatalytic activity, J. Mater.
Sci. - Mater. Electron., 26 (2015) 3309–3315.
- X. Li, M. Yoneda, Y. Shimada, Y. Matsui, Effect of surfactants
on the aggregation and stability of TiO2 nanomaterial in
environmental aqueous matrices, Sci. Total Environ., 574 (2017)
176–182.
- X. Liu, M. Wazne, Y. Han, C. Christodoulatos, K.L. Jasinkiewicz,
Effects of natural organic matter on aggregation kinetics of
boron nanoparticles in monovalent and divalent electrolytes,
J. Colloid Interface Sci., 348 (2010) 101–107.
- Y. Xiang, Y. Liu, B. Mi, Y. Leng, Molecular dynamics simulations
of polyamide membrane, calcium alginate gel, and their
interactions in aqueous solution, Langmuir, 30 (2014) 9098–9106.