References
- F.A. AlMarzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal,
Application of capacitive deionisation in water desalination: a
review, Desalination, 342 (2014) 3–15.
- K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis
membrane materials for desalination—development to date
and future potential, J. Membr. Sci., 370 (2011) 1–22.
- M. Sadrzadeh, T. Mohammadi, Sea water desalination using
electrodialysis, Desalination, 221 (2008) 440–447.
- H.J. Lee, F. Sarfert, H. Strathmann, S.H. Moon, Designing of
an electrodialysis desalination plant, Desalination, 142 (2002)
267–286.
- R. Borsani, S. Rebagliati, Fundamentals and costing of MSF
desalination plants and comparison with other technologies,
Desalination, 182 (2005) 29–37.
- H.T. El-Dessouky, H.M. Ettouney, Y. Al-Roumi, Multi-stage
flash desalination: present and future outlook, Chem. Eng. J.,
73 (1999) 173–190.
- J. Oladunni, J.H. Zain, A. Hai, F. Banat, G. Bharath, E. Alhseinat,
A comprehensive review on recently developed carbon based
nanocomposites for capacitive deionization: from theory to
practice, Sep. Purif. Technol., 207 (2018) 291–320.
- Z. Peng, D. Zhang, L. Shi, T. Yan, High performance ordered
mesoporous carbon/carbon nanotube composite electrodes
for capacitive deionization, J. Mater. Chem., 22 (2012)
6603–6612.
- L. Zou, L. Li, H. Song, G. Morris, Using mesoporous carbon
electrodes for brackish water desalination, Water Res., 42 (2008)
2340–2348.
- T.J. Welgemoed, C.F. Schutte, Capacitive deionization technology™: an alternative desalination solution, Desalination,
183 (2005) 327–340.
- S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel,
Review on the science and technology of water desalination by
capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
- F. Ahmad, S.J. Khan, Y. Jamal, H. Kamran, A. Ahsan, M. Ahmad,
A. Khan, Desalination of brackish water using capacitive
deionization (CDI) technology, Desal. Water Treat., 57 (2016)
7659–7666.
- F. Duan, Y. Li, H. Cao, Y. Xie, Y. Zhang, Capacitive deionization
by ordered mesoporous carbon: electrosorption isotherm,
kinetics, and the effect of modification, Desal. Water Treat., 52
(2014) 1388–1395.
- M.A. Ahmed, S. Tewari, Capacitive deionization: processes,
materials and state of the technology, J. Electroanal. Chem., 813
(2018) 178–192.
- D.K. Kohli, R. Singh, M.K. Singh, A. Singh, R.K. Khardekar,
P. Ram Sankar, P. Tiwari, P.K. Gupta, Study of carbon
aerogel-activated carbon composite electrodes for capacitive
deionization application, Desal. Water Treat., 49 (2012) 130–135.
- S. Gupta, A. Henson, B. Evans, R. Meek, Graphene-based
aerogels with carbon nanotubes as ultrahigh-performing
mesoporous capacitive deionization electrodes for brackish
and seawater desalination, Desal. Water Treat., 162 (2019)
97–111.
- J. Yang, L. Zou, H. Song, Z. Hao, Development of novel
MnO2/nanoporous carbon composite electrodes in capacitive
deionization technology, Desalination, 276 (2011) 199–206.
- C. Kim, J. Lee, S. Kim, J. Yoon, TiO2 sol–gel spray method for
carbon electrode fabrication to enhance desalination efficiency
of capacitive deionization, Desalination, 342 (2014) 70–74.
- P. Hota, M. Miah, S. Bose, D. Dinda, S.K. Saha, Ultra-small
amorphous MoS2 decorated reduced graphene oxide for
supercapacitor application, J. Mater. Sci. Technol., 40 (2020)
196–203.
- S. Tian, X. Zhang, Z. Zhang, Capacitive deionization with MoS2/g-C3N4 electrodes, Desalination, 479 (2020) 1–12, doi: 10.1016/j.
desal.2020.114348.
- Y. Wang, Y. Zhang, J. Shi, A. Pan, F. Jiang, S. Liang, G. Cao,
S-doped porous carbon confined SnS nanospheres with
enhanced electrochemical performance for sodium-ion
batteries, J. Mater. Chem. A, 6 (2018) 18286–18292.
- Y. Li, H. Xie, J. Tu, Nanostructured SnS/carbon composite for
supercapacitor, Mater. Lett., 63 (2009) 1785–1787.
- F. Wang, Q. Yao, L. Zhou, Z. Ma, M. He, F. Wu, Theoretical
understanding of SnS monolayer as Li ion battery anode
material, J. Phys. Chem. Solids, 121 (2018) 261–265.
- J. Shi, Y. Wang, Q. Su, F. Cheng, X. Kong, J. Lin, T. Zhu, S. Liang,
A. Pan, N-S co-doped C@SnS nanoflakes/graphene composite
as advanced anode for sodium-ion batteries, Chem. Eng. J.,
353 (2018) 606–614.
- S. Li, J. Zheng, Z. Hu, S. Zuo, Z. Wu, P. Yan, F. Pan, 3D-hierarchical
SnS nanostructures: controlled synthesis, formation mechanism
and lithium-ion storage performance, RSC Adv., 5 (2015)
72857–72862.
- N.K. Reddy, K.T.R. Reddy, SnS films for photovoltaic
applications: physical investigations on sprayed SnxSy films,
Phys. B, 368 (2005) 25–31.
- X. Gou, J. Chen, P. Shen, Synthesis, characterization and
application of SnS (=1, 2) nanoparticles, Mater. Chem. Phys.,
93 (2005) 557–566.
- R. Barik, N. Devi, V.K. Perla, S.K. Ghosh, K. Mallick, Stannous
sulfide nanoparticles for supercapacitor application, Appl.
Surf. Sci., 472 (2019) 112–117.
- M. Jayalakshmi, M.M. Rao, B.M. Choudary, Identifying nano
SnS as a new electrode material for electrochemical capacitors in
aqueous solutions, Electrochem. Commun., 6 (2004) 1119–1122.
- E. Cho, K. Song, M.H. Park, K.-W. Nam, Y.-M. Kang,
SnS 3D flowers with superb kinetic properties for anodic use in
next-generation sodium rechargeable batteries, Small, 12 (2016)
2510–2517.
- S. Zhang, L. Yue, H. Zhao, Z. Wang, J. Mi, Mwcnts wrapped
flower-like SnS composite as anode material for sodium-ion
battery, Mater. Lett., 209 (2017) 212–215.
- Y. Chen, B. Wang, T. Hou, X. Hu, X. Li, X. Sun, S. Cai, H. Ji,
C. Zheng, Enhanced electrochemical performance of SnS
nanoparticles/CNTs composite as anode material for sodiumion
battery, Chin. Chem. Lett., 29 (2018) 187–190.
- G. Zhou, L. Li, Q. Zhang, N. Li, F. Li, Octahedral Co3O4 particles
threaded by carbon nanotube arrays as integrated structure
anodes for lithium ion batteries, Phys. Chem. Chem. Phys.,
15 (2013) 5582–5587.
- M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener,
J.H. Satcher Jr., T.F. Baumann, Synthesis of graphene aerogel
with high electrical conductivity, J. Am. Chem. Soc., 132 (2010)
14067–14069.
- X. Liu, T. Chen, W.-C. Qiao, Z. Wang, L. Yu, Fabrication of
graphene/activated carbon nanofiber composites for high
performance capacitive deionization, J. Taiwan Inst. Chem.
Eng., 72 (2017) 213–219.
- Z. Lei, N. Christov, X.S. Zhao, Intercalation of mesoporous
carbon spheres between reduced graphene oxide sheets for
preparing high-rate supercapacitor electrodes, Energy Environ.
Sci., 4 (2011) 1866–1873.
- S. Dutta, S.-Y. Huang, C. Chen, J.E. Chen, Z.A. Alothman,
Y. Yamauchi, C.-H. Hou, K.C.W. Wu, Cellulose framework
directed construction of hierarchically porous carbons offering
high-performance capacitive deionization of brackish water,
ACS Sustainable Chem. Eng., 4 (2016) 1885–1893.
- H. Song, Y. Wu, S. Zhang, W. Li, B. Wang, C. Wang, J. Gao,
A. Li, Mesoporous generation-inspired ultrahigh capacitive
deionization performance by sono-assembled activated carbon/
inter-connected graphene network architecture, Electrochim.
Acta, 205 (2016) 161–169.
- N. Arora, F. Banat, G. Bharath, E. Alhseinat, Capacitive
deionization of NaCl from saline solution using graphene/CNTs/ZnO NPs based electrodes, J. Phys. D: Appl. Phys.,
52 (2019) 455304 1–13, doi: 10.1088/1361-6463/ab3967.
- K.L. Yang, T.-Y. Ying, S. Yiacoumi, C. Tsouris, E.S. Vittoratos,
Electrosorption of ions from aqueous solutions by carbon
aerogel? an electrical double-layer model, Langmuir, 17 (2001)
1961–1969.
- D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Enhanced
capacitive deionization performance of graphene/carbon
nanotube composites, J. Mater. Chem., 22 (2012) 14696–14704.
- P. Liang, L. Yuan, X. Yang, S. Zhou, X. Huang, Coupling ionexchangers
with inexpensive activated carbon fiber electrodes
to enhance the performance of capacitive deionization cells
for domestic wastewater desalination, Water Res., 47 (2013)
2523–2530.
- K. Wei, Y. Zhang, W. Han, J. Li, X. Sun, J. Shen, L. Wang,
A novel capacitive electrode based on TiO2-NTs array with
carbon embedded for water deionization: fabrication, characterization
and application study, Desalination, 420 (2017) 70–78.
- C. Wang, H. Song, Q. Zhang, B. Wang, A. Li, Parameter
optimization based on capacitive deionization for highly
efficient desalination of domestic wastewater biotreated
effluent and the fouled electrode regeneration, Desalination,
365 (2015) 407–415.