References

  1. P. Mondal, S. Baksi, D. Bose, Study of environmental issues in textile industries and recent wastewater treatment technology, World Sci. News, 61 (2017) 98–109.
  2. E.N. El Qada, S.J. Allen, G.M. Walker, Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm, Chem. Eng. J., 124 (2006) 103–110.
  3. M. Matsumoto, S. Usami, Photocatalytic degradation of pentachlorophenol by TiO2 supported on mesoporous silica, Desal. Water Treat., 18 (2017) 352–356.
  4. M. El Haddad, R. Mamouni, N. Saffaj, S. Lazar, Removal of a cationic dye–Basic red 12–from aqueous solution by adsorption onto animal bone meal, J. Assoc. Arab Univ. Basic Appl. Sci., 12 (2012) 48–54.
  5. B. Kakavandi, A. Takdastan, S. Pourfadakari, M. Ahmadmoazzam, S Jorfi, Heterogeneous catalytic degradation of organic compounds using nanoscale zero-valent iron supported on kaolinite: mechanism, kinetic and feasibility studies, J. Taiwan Inst. Chem. Eng., 96 (2019) 329–340.
  6. M.A. Martin-Lara, I.L. Rodriguez Rico, I. de la Carida Aloma Vicente, G. Blazquez Garcia, M. Calero de Hoces, Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions, Desalination, 256 (2010) 58–63.
  7. K.R. Ramakrishna, T. Viraraghavan, Dye removal using low cost adsorbents, Water Sci. Technol., 36 (1997) 189–196.
  8. Z. Aksu, Reactive dye bioaccumulation by Saccharomyces cerevisiae, Process Biochem., 38 (2003) 1437–1444.
  9. J. Jegan, J. Vijayaraghavan, T. Bhagavathi Pushpa, S.J. Sardhar Basha, Application of seaweeds for the removal of cationic dye from aqueous solution, Desal. Water Treat., 57 (2016) 25812–25821.
  10. T. Bhagavathi Pushpa, J. Jegan, S. Praveen, R. Gokulan, Biodecolorization of Basic blue 41 using EM based composts: isotherm and kinetics, Chemistryselect, 4 (2019) 10006–10012.
  11. A.A. Babaei, S.N. Alavi, M. Akbarifar, K. Ahmadi, A.R. Esfahani, B. Kakavandi, Experimental and modeling study on adsorption of cationic Methylene blue dye onto mesoporous biochars prepared from agrowaste, Desal. Water Treat., 57 (2016) 27199–27212.
  12. S. Rangabhashiyam, N. Selvaraju, Evaluation of the biosorption potential of a novel Caryotaurens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions, J. Taiwan Inst. Chem. Eng., 47(2007) 59–70.
  13. D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions: a review, Bioresour. Technol., 99 (2008) 6017–6027.
  14. M. Omidvar Borna M. Pirsaheb, M. Vosoughi Niri, R. Khosravi Mashizie, B. Kakavandi, M. Reza Zare, A. Asadi, Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent, J. Taiwan Inst. Chem. Eng., 68 (2016) 80–89.
  15. M. Ahmadi, M. Hazrati, B. Kakavandi, Development of maghemite nanoparticles supported on cross-linked chitosan (γ-Fe2O3@CS) as a recoverable mesoporous magnetic composite for effective heavy metals removal, J. Mol. Liq., 248 (2017) 184–196.
  16. M.A.P. Moreno, F.M. Agugliaro, Q.H. Escobedo, A.J.P. Moreno, Peanut shell for energy: properties and its potential to respect the environment, Sustainability, 10 (2018) 1–15.
  17. P.K. Borthakur, R.K. Bhattacharyya, U. Das, Biochar in Organic Farming, C.S. Chandran, S. Thomas, M. Unni, Eds., Organic Farming, Springer, Cham, 2019, pp. 109–134.
  18. M.S. Alam, D.S. Alessi, Chapter 4 – Modeling the Surface Chemistry of Biochars, Y.S. Ok, D.C.W. Tsang, N. Bolan, J.M. Novak, Eds., Biochar from Biomass and Waste: Fundamentals and Applications, Elsevier Radarweg 29, P.O. Box: 211, 1000 AE Amsterdam, Netherlands, 2019, pp. 59–72.
  19. R. Tareq, N. Akter, M.S. Azam, Chapter 10 – Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation, Y.S. Ok, D.C.W. Tsang, N. Bolan, J.M. Novak, Eds., Biochar from Biomass and Waste-Fundamentals and Applications, Elsevier, 2019, pp. 169–209.
  20. R. Gokulan, G. Ganesh Prabhu, J. Jegan, A. Avinash, A critical insight into biomass derived biosorbent for bioremediation of dyes, Chemistryselect, 4 (2019) 9762–9775.
  21. S. Biswas, M. Bal, S.K. Behera, T.K. Sen, B.C. Meikap, Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response surface methodology (RSM), Water, 11 (2019) 325.
  22. M.Z. Alam, S.A. Muyibi, J. Toramae, Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches, J. Environ. Sci., 19 (2007) 674–677.
  23. Z. Luo, E. Wang, H. Zheng, J.A Baldock, O.J Sun, Q. Shao, Convergent modeling of past soil organic carbon stocks but divergent projections, Biogeosci. Discuss., 12 (2015) 4373–4383.
  24. Z. Mahdi, A. El Hanandeh, Q. Yu, Date seed derived biochar for Ni(II) removal from aqueous solutions, MATEC Web Conf., 120 (2017) 05005.
  25. R. Gokulan, J. Raja Murugadoss, J. Jegan, A. Avinash, Comparative desorption studies on remediation of remazol dyes using biochar (sorbent) derived from green marine seaweeds, Chemistryselect, 4 (2019) 7437–7445.
  26. E.F. Zama, Y.G. Zhu, B.J. Reid, G.X. Sun, The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution, J. Cleaner Prod., 148 (2017) 127–136.
  27. S.A. Hosseini, O. Gholipoor, Removal of arsenic from aqueous solutions using MgFe2O4 nano spinel and GO/MgFe2O4 nanocomposite: an application of response surface methodology, Desal. Water Treat., 89 (2017) 162–170.
  28. G.A. Dissanayake Herath, L.S. Poh, W.J. Ng, Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology, Chemosphere, 227 (2019) 533–540.
  29. K. Sen, N.K. Mondal, S. Chattoraj, J.K. Datta, Statistical optimization study of adsorption parameters for the removal of glyphosate on forest soil using the response surface methodology, Environ. Earth Sci., 76 (2017) 1–15.
  30. R. Gokulan, A. Avinash, G. Ganesh Prabhu, J. Jegan, Remediation of remazol dyes by biochar derived from Caulerpa Scalpelliformis–an eco-friendly approach, J. Environ. Chem. Eng., 7 (2019) 103297.
  31. J. Jegan, S. Praveen, T. Bhagavathi Pushpa, R. Gokulan, Sorption kinetics and isotherm studies of cationic dyes using groundnut (Arachis hypogaea) shell derived biochar a low-cost adsorbent, Appl. Ecol. Environ. Res., 18 (2020) 1925–1939.
  32. J. Jegan, S. Praveen, T. Bhagavathi Pushpa, R. Gokulan, Biodecolorization of Basic Violet 03 using biochar derived from agricultural wastes: isotherm and kinetics, J. Biobased Mater. Bioenergy, 14 (2020) 316–326.
  33. T.K. Oh, B.S. Choi, Y. Shinogi, J. Chikushi, Characterization of biochar derived from three types of biomass, bioproduction environmental sciences, J. Faculty Agric. Kyushu Univ., 57 (2012) 61–66.
  34. V. Ponnusami, V. Krithika, R. Madhuram, S.N. Srivastava, Biosorption of reactive dye using acid-treated rice husk: factorial design analysis, J. Hazard. Mater., 142 (2007) 397–403.
  35. Momina, Md. Rafatullah, S. Ismail, A. Ahmad, Optimization study for the desorption of Methylene blue dye from clay based adsorbent coating, Water, 11 (2019) 1304.
  36. S. Chakraborty, S. Chowdhury, P.D. Saha, Adsorption of Crystal violet from aqueous solution onto NaOH-modified rice husk, Carbohydr. Polym., 84 (2011) 1533–1541.
  37. S. Praveen, T. Bhagavathi Pushpa, R. Gokulan, J. Jegan, Evaluation of the adsorption capacity of Cocos Nucifera shell derived biochar for basic dyes sequestration from aqueous solution, Energy Sources Part A, (2020), doi: 10.1080/15567036.2020.1800142.