References

  1. H. Yu, G.H. Covey, A.J. O’Connor, Silvichemicals from pulp mill wastes-biosorption of metal ions on ellagic acid, Appita J., 2 (2000) 559–566.
  2. Q. Du, S. Liu, Z. Cao, Y. Wang, Ammonia removal from aqueous solution using natural Chinese clinoptilolite, Sep. Purif. Technol., 44 (2005) 229–234.
  3. O. Lahav, M. Green, Ammonium removal using ion exchange and biological regeneration, Water Res., 32 (1998) 2019–2028.
  4. S. Farag, M.H. Abo‐Shosha, N.A. Ibrahim, Application of starch ion exchange composites II. Removal of some acid dyestuffs using starch methylenbis acrylamide/dimethylaminoethyl methacrylate anion exchange composite, Tinctoria, 10 (1994) 48–56.
  5. K.C. Makris, D. Sarkar, R. Datta, Aluminum-based drinkingwater treatment residuals: a novel sorbent for perchlorate removal, Environ. Pollut., 140 (2006) 9–12.
  6. J.M. Novak, D.W. Watts, Increasing the phosphorus sorption capacity of southeastern Coastal Plain soils using water treatment residuals, Soil Sci., 169 (2004) 206–214.
  7. E.A. Elkhatib, A.M. Mahdy, F.K. Sherif, K.A. Salama, A novel sorbent for enhanced phosphorus removal from aqueous medium, Curr. Nanosci., 11 (2015) 655–668.
  8. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  9. J.B. Jones Jr., Laboratory Guide for Conducting Soil Tests and Plant Analysis, CRC Press, USA, 2001.
  10. R. Nadeem, T.M. Ansari, A.M. Khalid, Fourier transform infrared spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales, J. Hazard. Mater., 156 (2008) 64–73.
  11. A.R. Dinçer, Y. Güneş, N. Karakaya, E. Güneş, Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution, Bioresour. Technol., 98 (2007) 834–839.
  12. A.R. Binupriya, M. Sathishkumar, S.H. Jung, S.H. Song, S.I. Yun, A novel method in utilization of bokbunja seed wastes from wineries in liquid-phase sequestration of reactive blue 4, Int. J. Environ. Res., 3 (2009) 1–12.
  13. C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm. I. Theoretical, J. Colloid Interface Sci., 47 (1974) 755–765.
  14. E.A. Elkhatib, A.M. Mahdy, M.M. ElManeah, Effects of drinking water treatment residuals on nickel retention in soils: a macroscopic and thermodynamic study, J. Soils Sediments, 13 (2013) 94–105.
  15. T.H. Christensen, Cadmium soil sorption at low concentrations: VIII. Correlation with soil parameters, Water Air Soil Pollut., 44 (1989) 71–82.
  16. K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste, Bioresour. Technol., 76 (2001) 63–65.
  17. M.S. Rosenthal, J.S. Ross, R. Bilodeau, R.S. Richter, J.E. Palley, E.H. Bradley, Economic evaluation of a comprehensive teenage pregnancy prevention program: pilot program, Am. J. Preventive Med., 37 (2009) S280–S287.
  18. E.A. Elkhatib, J.L. Hern, Kinetics of potassium desorption from Appalachian soils, Soil Sci., 145 (1988) 11–19.
  19. E.A. Elkhatib, O.L. Bennett, R.J. Wright, Kinetics of arsenite sorption in soils [Elovich equation, modified Freundlich equation, sorption mechanism], J. Soil Sci. Soc. Am., 48 (1984) 758–762.
  20. E.A. Elkhatib, G.M. Elshebiny, A.M. Balba, Kinetics of lead sorption in calcareous soils, Arid Land Res. Manage., 6 (1992) 297–310.
  21. S. Kuo, E.G. Lotse, Kinetics of phosphate adsorption and desorption by hematite and gibbsite1, Soil Sci., 116 (1973) 400–406.
  22. M. Özacar, I.A. Şengil, Adsorption of metal complex dyes from aqueous solutions by pine sawdust, Bioresour. Technol., 96 (2005) 791–795.
  23. L.H. Abdel-Rahman, A.M. Abu-Dief, M.A. Abd-El Sayed, M.M. Zikry, Nano sized Moringa oleifera an effective strategy for Pb(II) ions removal from aqueous solution, Chem. Mater. Res., 8 (2016) 8–22.
  24. M.A. Wahab, S. Jellali, N. Jedidi, Effect of temperature and pH on the biosorption of ammonium onto Posidonia oceanica fibers: equilibrium, and kinetic modeling studies, Bioresour. Technol., 101 (2010) 8606–8615.
  25. H. Gogoi, T. Leiviskä, E. Heiderscheidt, H. Postila, J. Tanskanen, Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents, J. Environ. Manage., 209 (2018) 316–327.
  26. E.A. Ajav, O.A. Fakayode, Physical properties of moringa (Moringa oleifera) seeds in relation to an oil expeller design, Agrosearch, 13 (2013) 115–130.
  27. R.L. Mnisi, P.P. Ndibewu, Surface and adsorptive properties of Moringa oleifera bark for removal of V(V) from aqueous solutions, Environ. Monit. Assess., 189 (2017) 606–611.
  28. R.J. Hunter, Zeta Potential in Colloid Science-Principle and Applications, Academic Press, New York, NY, 1988, pp. 255–257.
  29. D.J. Shaw, Colloid and Surface Chemistry, Great, Oxford, 1993.
  30. Y. Lin, H. Liu, Zeta potential of a subbituminous coal and its effect on particle agglomeration, Min. Metall. Explor., 13 (1996) 31–35.
  31. N. Abidi, J. Duplay, A. Jada, E. Errais, M. Ghazi, K. Semhi, M. Trabelsi-Ayadi, Removal of anionic dye from textile industries’ effluents by using Tunisian clays as adsorbents. Ζeta potential and streaming-induced potential measurements, C.R. Chim., 22 (2019) 113–125.
  32. R. Gao, J. Wang, Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge, J. Hazard. Mater., 145 (2007) 398–403.
  33. V.T. Fávere, H.G. Riella, S.D. Rosa, Chitosan-n-2-hydroxypropyl trimethyl ammonium chloride as adsorbent for the removal of the reactive dye from aqueous solutions, Quím. Nova, 33 (2010) 1476–1481.
  34. S. Jellali, M.A. Wahab, M. Anane, K. Riahi, N. Jedidi, Biosorption characteristics of ammonium from aqueous solutions onto Posidonia oceanica (L.) fibers, Desalination, 270 (2011) 40–49.
  35. B. Mittal, I, me, and mine—how products become consumers› extended selves, J. Consum. Behav. Int. Res. Rev., 5 (2006) 550–562.
  36. Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng, L. Wang, H. Xiao, S. Deng, Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43−), Chemosphere, 119 (2015) 646–653.
  37. J. Huang, N.R. Kankanamge, C. Chow, D.T. Welsh, T. Li, P.R. Teasdale, Removing ammonium from water and wastewater using cost-effective adsorbents: a review, J. Environ. Sci., 63 (2018) 174–197.
  38. P.S. Bryant, J.N. Petersen, J.M. Lee, T.M. Brouns, Sorption of heavy metals by untreated red fir sawdust, Appl. Biochem. Biotechnol., 34 (1992) 777–788.
  39. N.A. Qambrani, M.M. Rahman, S. Won, S. Shim, C. Ra, Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review, Renewable Sustainable Energy Rev., 79 (2017) 255–273.
  40. C. Raji, G.N. Manju, T.S. Anirudhan, Removal of heavy metal ions from water using sawdust-based activated carbon, Indian J. Eng. Mater. Sci., 4 (1997) 254–260.
  41. T.S. Anirudhan, M.K. Sreedhar, Adsorption thermodynamics of Co(II) on polysulphide treated sawdust, Indian J. Chem. Technol., 5 (1998) 41–47.
  42. A.M. Ismail, S.B. Padrick, B. Chen, J. Umetani, M.K. Rosen, The WAVE regulatory complex is inhibited, Nat. Struct. Mol. Biol., 16 (2009) 561–563.
  43. M. Fomina, G.M. Gadd, Biosorption: current perspectives on concept, definition and application, Bioresour. Technol., 160 (2014) 3–14.
  44. R. Gnanasambandam, A. Proctor, Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy, Food Chem., 68 (2000) 327–332.
  45. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci., 30 (2005) 38–70.
  46. A. Ronda, M. Della Zassa, M.A. Martin-Lara, M. Calero, P. Canu, Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent, J. Hazard. Mater., 308 (2016) 285–293.
  47. B. Volesky, Sorption and Biosorption. BV Sorbex Inc., St. Lambert, Quebec, 2003, p. 326.
  48. A.M. Mahdy, M.Z.M. Salem, A.M. Ali, H.M. Ali, Optimum operating conditions for the removal of phosphate from water using of wood-branch nanoparticles from Eucalyptus camaldulensis, Materials, 13 (2020) 1851.