References

  1. S. Hou, H. Zhang, A hybrid solar desalination process of the multi-effect humidification dehumidification and basin-type unit, Desalination, 220 (2008) 552–557.
  2. M.A. Sharaf Eldean, Design and Simulation of Solar Desalination Systems, Ph.D. Thesis (Philography No. 11114571), 2011.
  3. A.A. Mabrouk, A.S. Nafey, H.E.S. Fath, Thermoeconomic analysis of some existing desalination processes, Desalination, 205 (2007) 354–373.
  4. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, Thermoeconomic investigation of multi effect evaporation (MEE) and hybrid multi effect evaporation-multi stage flash (MEE-MSF) systems, Desalination, 201 (2006) 241–254.
  5. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, A new visual package for design and simulation of desalination processes, Desalination, 194 (2006) 281–296.
  6. A.N. Mabrouk, H.S. Fath, Experimental study of highperformance hybrid NF-MSF by renewable energy, Desal. Water Treat., 51 (2013) 6895–6904.
  7. A.N. Mabrouk, M. Koc, A. Abdala, Technoeconomic analysis of tri-hybrid reverse osmosis-forward osmosis-multi-stage flash desalination process, Desal. Water Treat., 98 (2017) 1–15.
  8. B. Milow, E. Zarza, Advanced MED solar desalination plants configurations, costs, future - seven years of experience at the Plataforma Solar de Almeria (Spain), Desalination, 108 (1996) 51–58.
  9. M.A. Darwish, H.K. Abdulrahim, A.S. Hassan, A.A. Mabrouk, PV and CSP solar technologies and desalination: economic analysis, Desal. Water Treat., 57 (2016) 16679–16702.
  10. G. Iaquaniello, A. Salladini, A.A. Mabrouk, H.E.S. Fath, Concentrating solar power (CSP) system integrated with MED-RO hybrid desalination, Desalination, 336 (2014) 121–128.
  11. M.A. Sharaf, A.S. Nafey, L. Garcia-Rodriguez, Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process, Desalination, 272 (2011) 135–147.
  12. M.A. Darwish, F. Al-Juwayhel, H. Abdul Raheim, Multi-effect boiling systems from an energy viewpoint, Desalination, 194 (2006) 22–39.
  13. A.M. El-Nashar, K. Ishii, Abu Dhabi solar distillation plant, Desalination, 52 (1985) 217–234.
  14. I.B. Askari, M. Ameri, F. Calise, Energy, exergy and exergoeconomic analysis of different water desalination technologies powered by linear Fresnel solar field, Desalination, 425 (2018) 37–67.
  15. I.B. Askari, M. Ameri, Solar Rankine cycle (SRC) powered by linear Fresnel solar field and integrated with multi effect desalination (MED) system, Renewable Energy, 117 (2018) 52–70.
  16. M. Alhaj, A. Mabrouk, S.G. Al Ghamdi, Energy efficient multieffect distillation powered by a solar linear Fresnel collector, Energy Convers. Manage., 171 (2018) 576–586.
  17. V. Samson, R. Packiaraj, R. Velraj, P. Jalihal, Transient analysis of steam accumulator integrated with solar based MED-TVC system, Desalination, 435 (2018) 3–22.
  18. S. Casimiro, J. Cardoso, C. Ioakimidis, J. Farinha Mendes, C. Mineo, A. Cipollina, MED parallel system powered by concentrating solar power (CSP). Model and case study: Trapani, Sicily, Desal. Water Treat., 55 (2015) 3253–3266.
  19. P. Bandelier, F. Pelascini, J.-J. d’Hurlaborde, A. Maisse, B. Boillot, J. Laugier, MED seawater desalination using a low-grade solar heat source, Desal. Water Treat., 57 (2016) 23074–23084.
  20. L. Yang, T. Shen, B. Zhang, S. Shen, K. Zhang, Exergy analysis of a solar-assisted MED desalination experimental unit, Desal. Water Treat., 51 (2013) 1272–1278.
  21. P. Palenzuela, D.C. Alarcón-Padilla, G. Zaragoza, Experimental parametric analysis of a solar pilot-scale multi-effect distillation plant, Desal. Water Treat., 57 (2016) 23097–23109.
  22. M.A. Sharaf, Thermo-economic comparisons of different types of solar desalination processes, J. Solar Energy Eng., 134 (2012) 1–10.
  23. A.S. Nafey, M.A. Sharaf, L. Garcia-Rodriguez, A new visual library for design and simulation of solar desalination systems (SDS), Desalination, 259 (2010) 197–207.
  24. M.A. Sharaf Eldean, A.M. Soliman, A new visual library for modeling and simulation of renewable energy desalination systems (REDS), Desal. Water Treat., 51 (2013) 6905–6920.
  25. P. Iodice, G. Langella, A. Amoresano, Modeling and energeticexergetic evaluation of a novel screw expander-based direct steam generation solar system, Appl. Therm. Eng., 155 (2019) 82–95.
  26. P. Iodice, G. Langella, A. Amoresano, Energy performance and numerical optimization of a screw expander–based solar thermal electricity system in a wide range of fluctuating operating conditions, Int. J. Energy Res., 44 (2020) 1858–1874.
  27. Y. Liang, J. Chen, X. Luo, J. Chen, Z. Yang, Y. Chen, Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system, J. Cleaner Prod., 266 (2020) 2–4, doi: 10.1016/j. jclepro.2020.121927.
  28. J. Oyekale, M. Petrollese, F. Heberle, D. Brüggemann, G. Cau, Exergetic and integrated exergoeconomic assessments of a hybrid solar-biomass organic Rankine cycle cogeneration plant, Energy Convers. Manage., 215 (2020) 2–3, doi: 10.1016/j. enconman.2020.112905.
  29. J. Oyekale, M. Petrollese, G. Cau, Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant, Appl. Energy, 268 (2020) 3–4, doi: 10.1016/j.apenergy.2020.114888.
  30. http://www.mats.enea.it/
  31. M. Khamis Mansour, M.A. Qassem, H. Fath, CFD analysis of vapor flow and design improvement in MED evaporation chamber, Desal. Water Treat., 56 (2015) 2023–2036.
  32. A.-N. Mabrouk, H. Fath, G. Iaquaniello, A. Salladini, Simulation and Design of MED Desalination Plant With Air Cooled Condenser Driven by Concentrated Solar Power, IDA 2013 World Congress on Desalination and Water Reuse, China, 2013.
  33. A.S. Nafey, M.A. Sharaf, L. García-Rodríguez, Thermoeconomic analysis of a combined solar organic Rankine cyclereverse osmosis desalination process with different energy recovery configurations, Desalination, 261 (2010) 138–147.
  34. https://www.therminol.com
  35. S. Eldean, M.A. Rafi, K.M. Soliman, A.M. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton, Energy Convers. Manage., 150 (2017) 651–668.
  36. M.M. Elsayed, I.S. Taha, J.A. Sabbagh, Design of Solar Thermal Systems, Scientific Publishing Center King Abdulaziz University, Jeddah, 1994, pp. 57–61.
  37. H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water Desalination, Kuwait University, Elsevier Science, 2002.
  38. F. Banat, N. Jwaied, Exergy analysis of desalination by solar-powered membrane distillation units, Desalination, 230 (2008) 27–40.
  39. A.S. Nafey, Design and Simulation of Seawater-Thermal Desalination Plants, Leeds University, Ph. D. Thesis, 1988.
  40. https://www.acwapower.com/en/projects/noor-energy-1/
  41. M.A.S. Eldean, Design and Simulation of Solar Desalination Systems, Ph.D. Thesis, Suez Canal University, Faculty of Petroleum & Mining Engineering, Bibliography No.: 11114571, 2011.
  42. https://celsiuscity.eu/thermal-energy-storage/
  43. https://www.redslibrary.com/product-page/solar-radiationmodel
  44. A.S. Nafey, M.A. Sharaf, Combined solar organic Rankine cycle with reverse osmosis desalination process: energy, exergy, and cost evaluations, Renewable Energy, 35 (2010) 2571–2580.