References

  1. D.-S. Ahn, I.-S. Jeon, S.-H. Jang, S.-W. Park, S.-Y. Lee, W.-J. Cheong, Hydrogen bonding in aromatic alcohol-water clusters: a brief review, Bull. Korean Chem. Soc., 24 (2003) 695–702.
  2. J.S. Liang, D.B. Zhu, J.P. Meng, L.J. Wang, F.P. Li, Z.G. Liu, Y. Ding, L.H. Liu, G.C. Liang, Performance and application of far infrared rays emitted from rare earth mineral composite materials, J. Nanosci. Nanotechnol., 8 (2008) 1203–1210.
  3. J.P. Meng, J. Liu, X.L. Huo, J. Li, Conductivity method of alkaline solution in evaluating the spontaneous polarization property of tourmaline, Appl. Mech. Mater., 320 (2013) 584–589.
  4. X. Gai, Effect of Rare Earth Complex on Negative Oxygen Ion Release and Infrared Radiation Characteristics of Tourmaline, China University of Geosciences, Beijing, 2018.
  5. R.H. Li, Z.P. Jiang, H.W. Yang, Y.T. Guan, Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster, J. Mol. Liq., 126 (2006) 14–18.
  6. Y. Yan, X.-X. Ou, H.-P. Zhang, Y. Shao, Effects of nano-materials on 17O NMR line-width of water clusters, J. Mol. Struct., 1051 (2013) 211–214.
  7. J.P. Meng, X.L. Huo, J. Liu, Y.F. Pan, Influence of tourmaline mineral material on structure and physical and chemical properties of water, Appl. Mech. Mater., 320 (2013) 577–583.
  8. D.B. Zhu, J.S. Liang, Y. Ding, G. Xue, L.H. Liu, Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth, J. Am. Ceram. Soc., 91 (2008) 2588–2592.
  9. T. Nakamura, T. Kubo, Tourmaline group crystals reaction with water, Ferroelectrics, 137 (1992) 13–31.
  10. E. Wang, F.N. Shi, E. Manlapig, Factors affecting electrical comminution performance, Miner. Eng., 34 (2012) 48–54.
  11. E. Wang, F.N. Shi, E. Manlapig, Pre-weakening of mineral ores by high voltage pulses, Miner. Eng., 24 (2011) 455–462.
  12. U. Andres, Development and prospects of mineral liberation by electrical pulses, Int. J. Miner. Process., 97 (2010) 31–38.
  13. U. Andres, Dielectric separation of minerals, J. Electrostat., 37 (1996) 227–248.
  14. U. Andres, Electrical disintegration of rock, Miner. Process. Extr. Metall. Rev., 14 (1995) 87–110.
  15. F.N. Shi, E. Manlapig, W.R. Zuo, Progress and challenges in electrical comminution by high-voltage pulses, Chem. Eng. Technol., 37 (2014) 765–769.
  16. S.H. Cho, M. Yokota, M. Ito, S. Kawasaki, S.B. Jeong, B.K. Kim, K. Kaneko, Electrical disintegration and micro-focus X-ray CT observations of cement paste samples with dispersed mineral particles, Miner. Eng., 57 (2014) 79–85.
  17. F.N. Shi, W.R. Zuo, E. Manlapig, Characterisation of preweakening effect on ores by high voltage electrical pulses based on single-particle tests, Miner. Eng., 50–51 (2013) 69–76.
  18. W.R. Zuo, F.N. Shi, E. Manlapig, Modelling of high voltage pulse breakage of ores, Miner. Eng., 83 (2015) 168–74.
  19. U. Andres, Parameters of disintegration of rock by electrical pulses, Powder Technol., 58 (1989) 265–269.
  20. G.H. Yan, B. Zhang, B. Lv, G.Q. Zhu, X.N. Zhu, Y.M. Zhao, Enrichment of chalcopyrite using high-voltage pulse discharge, Powder Technol., 340 (2018) 420–427.
  21. F.Z. Yan, B.Q. Lin, J. Xu, Y.H. Wang, X.L. Zhang, S.J. Peng, Structural evolution characteristics of middle–high rank coal samples subjected to high-voltage electrical pulse, Energy Fuels, 32 (2018) 3263–3271.
  22. P. Gao, S. Yuan, Y.X. Han, Y.J. Li, H.Y. Chen, Experimental study on the effect of pretreatment with high-voltage electrical pulses on mineral liberation and separation of magnetite ore, Minerals, 7 (2017) 153, doi: 10.3390/min7090153.
  23. V.A. Chanturiya, I.Zh. Bunin, M. Ryazantseva, XPS study of sulfide minerals surface oxidation under high-voltage nanosecond pulses, Miner. Eng., 143 (2019) 105939.
  24. T. Parker, F.N. Shi, C. Evans, M. Powell, The effects of electrical comminution on the mineral liberation and surface chemistry of a porphyry copper ore, Miner. Eng., 82 (2015) 101–106.
  25. A. Zhu, Preparation of Ultra-Fine Product of Tourmaline and its Improvement Effect and Mechanism for Aquaculture, Jiangnan University, Wuxi, 2012.
  26. Y. Pan, Research of Activating Water and Biological Effects of Tourmaline Mineral Material, Heibei University of Technology, Tianjin, 2006.
  27. J.-T. Yeh, W. Wei, H.-H. Hsiung, T. Jiang, Negative air ions releasing properties of tourmaline contained ethylene propylene diene terpolymer/polypropylene thermoplastic elastomers, J. Appl. Polym. Sci., 109 (2008) 82–89.
  28. S. Sun, C.D. Wei, Y.X. Liu, Characterization and water activation behavior of tourmaline nanoparticles, J. Nanosci. Nanotechnol., 10 (2010) 2119–2124.
  29. L.D. Tijing, M.-H. Yu, C.-H. Kim, A. Amarjargal, Y.C. Lee, D.-H. Lee, D.-W. Kim, C.S. Kim, Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline, Appl. Therm. Eng., 31 (2011) 2025–2031.
  30. D.B. Chesnut, Structures, energies, and NMR shieldings of some small water clusters on the counterpoise corrected potential energy surface, J. Phys. Chem. A, 106 (2002) 6876–6879.
  31. K. Kristinaitytė, L. Dagys, J. Kausteklis, V. Klimavicius, I. Doroshenko, V. Pogorelov, N.R. Valevičienė, V. Balevicius, NMR and FTIR studies of clustering of water molecules: from low-temperature matrices to nano-structured materials used in innovative medicine, J. Mol. Liq., 235 (2017) 1–6.
  32. C. Lao-ngam, M. Phonyiem, S. Chaiwongwattana, Y. Kawazoe, K. Sagarik, Characteristic NMR spectra of proton transfer in protonated water clusters, Chem. Phys., 420 (2013) 50–61.
  33. J.P. Meng, W. Jin, J.S. Liang, Y. Ding, K. Gan, Y.D. Yuan, Effects of particle size on far infrared emission properties of tourmaline superfine powders, J. Nanosci. Nanotechnol., 10 (2010) 2083–2087.