References

  1. H.K. Khan, M.Y.A Rehman, R.N. Malik, Fate and toxicity of pharmaceuticals in water environment: an insight on their occurrence in South Asia, J. Environ. Manage., 271 (2020) 111030.
  2. W. Phasuphan, N. Praphairaksit, A. Imyima, Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber, J. Mol. Liq., 294 (2019) 111554.
  3. M. Kumar, S. Jaiswal, K.K Sodhi, P. Shree, D.K. Singh, P.K. Agarwal, P. Shukla, Antibiotics bioremediation: perspectives on its ecotoxicity and resistance, Environ. Int., 124 (2019) 448–461.
  4. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–641.
  5. A. Akici, V. Aydin, A. Kiroglu, Assessment of the association between drug disposal practices and drug use and storage behaviors, Saudi Pharm. J., 26 (2018) 7–13.
  6. I. Keisuke, J.N. Naeimeh, M.G. El-Din, Degradation of Aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review, Ozone: Sci. Eng., 28 (2006) 353–414.
  7. National Academies of Sciences, Engineering and Medicine, Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy, The National Academies Press, 2018.
  8. M. Qiao, G.-G. Ying, A.C. Singer, Y.-G. Zhu, Review of antibiotic resistance in China and its environment, Environ. Int., 110 (2017) 160–172.
  9. J.L. Martinez, The role of natural environments in the evolution of resistance traits in pathogenic bacteria, Proc. Biol. Sci., 276 (2009) 2521–2530.
  10. B. Yujie, F. Caixia, H. Min, L. Lei, H. W. Ming, Z. Chunmiao, Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review, Environ. Res., 169 (2019) 483–493.
  11. A.D. Derya, S.Y. Yalçın, D.Y. Dilek, Amoxicillin degradation using green synthesized iron oxide nanoparticles: kinetics and mechanism analysis, Environ. Nanotechnol. Monit. Manage, 11 (2019) 100219.
  12. H.H.A. Kosar, M. Hans, M. Siegfried, K. Dieter, M. Detlev, K. Ibrahim, A. Mohammad, M. Rashid, Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and nonthermal plasma, Chem. Eng. J., 313 (2017) 1033–1041.
  13. B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, S.J. Dhoble, Prospective of nanotechnology in degradation of waste water: a new challenges, Nano-Struct. Nano-Obj., 22 (2020) 100442.
  14. W. Zhang, Nanoscale iron particles for environmental remediation: an overview, J. Nanopart. Res., 5 (2003) 323–332.
  15. Ö. Kerkez-Kuyumcu, Ş.S. Bayazit, M.A. Salamb, Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets, J. Ind. Eng. Chem., 36 (2016) 198–205.
  16. C.S. Bhatt, B. Nagaraj, A.K. Suresh, Nanoparticles-shape influenced high-efficient degradation of dyes: comparative evaluation of nano-cubes vs nano-rods vs nano-spheres, J. Mol. Liq., 242 (2017) 958–965.
  17. P. Patanjali, R. Singh, A. Kumar, P. Chaudhary, Nanotechnology for water treatment: a green approach In green synthesis, characterization and applications of nanoparticles, 2019, pp. 485–512.
  18. E.M. Sarpong, G.E. Miller, Narrow-and broad-spectrum antibiotic use among US children, Health Serv. Res., 50 (2015) 830–846.
  19. T. Heberer, Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data, Toxicol. Lett., 131 (2002) 5–17.
  20. O.A.H. Jones, N. Voulvoulis., J.N. Lester. Human Pharmaceuticals in Wastewater Treatment Processes, Crit. Rev. Environ. Sci. Technol., 35 (2005) 401–427.
  21. A. Obayiuwana, A.Ogunjobi, M. Yang, M. Ibekwe, Characterization of bacterial communities and their antibiotic resistance profiles in wastewaters obtained from pharmaceutical facilities in Lagos and Ogun states, Nigeria, Int. J. Environ. Res. Public Health, 15 (2018) 1365.
  22. A. Pruden, D.J. Larsson, A. Amezquita, P. Collignon, K.K. Brandt, D.W. Graham, E. Topp, Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment, Environ. Health Perspect., 121 (2013) 878–885.
  23. B. Hong, Q. Lin, S. Yu, Y. Chen, Y. Chen, P. Chiang, Urbanization gradient of selected pharmaceuticals in surface water at a watershed scale, Sci. Total Environ., 634 (2018) 448–458.
  24. M. Harrabi, S.V.D. Giustina, F. Aloulou, S. Rodriguez-Mozaz, D. Barcelo, B. Elleuch, Analysis of multiclass antibiotic residues in urban wastewater in Tunisia, Environ. Nanotechnol. Monit. Manage., 10 (2018) 163–170.
  25. B.T. Ferrari, N. Paxéus, R.L. Giudice, A. Pollio, J. Garric, Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac, Ecotoxicol. Environ. Saf., 55 (2003) 359–370.
  26. N. Laville, S. Ait-Aissa, E. Gomez, C. Casellas, J.M. Porcher, Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes, Toxicology, 196 (2004) 41–55.
  27. O.A. Jones, J.N. Lester, N. Voulvoulis, Pharmaceuticals: a threat to drinking water, Trends Biotechnol., 23 (2005) 163–167.
  28. S.K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry, Chem. Rev., 107 (2007) 2319–2364.
  29. M.L. Richardson, J.M. Bowron, The fate of pharmaceutical chemicals in the aquatic environment, J. Pharm. Pharmacol., 37 (1985) 1–12.
  30. K. Kümmerer, Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources – a review, Chemosphere, 45 (2001) 957–969.
  31. J. Debska, A. Kot-Wasik, J. Namieśnik, Fate and analysis of pharmaceutical residues in the aquatic environment, Crit. Rev. Anal. Chem., 34 (2004) 51–67.
  32. T.A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers, Water Res., 32 (1998) 3245–3260.
  33. R. Hirsch, T. Ternes, K. Haberer, K.L. Kratz, Occurrence of antibiotics in the aquatic environment, Sci. Total Environ., 225 (1999) 109–118.
  34. A. Putschew, S. Wischnack, M. Jekel, Occurrence of triiodinated X-ray contrast agents in the aquatic environment, Sci. Total Environ., 255 (2000) 129–134.
  35. B. Soulet, A. Tauxe, J. Tarradellas, Analysis of acidic drugs in Swiss wastewaters, Int. J. Environ. Anal. Chem., 82 (2002) 659–667.
  36. A.C. Belfroid, A.V. Horst, A.D. Vethaak, A.J. Schafer, G.B.J. Rijs, J. Wegener, W.P. Cofino, Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands, Sci. Total Environ., 225 (1999) 101–108.
  37. T.A. Ternes, M. Stumpf, J. Mueller, K. Haberer, R.D. Wilken, M. Servos, Behavior and occurrence of Estrogens in Municipal Sewage Treatment Plants—I. Investigations in Germany, Canada and Brazil, Sci. Total Environ., 225 (1999) 81–90.
  38. I. Rodrı́guez, J.B. Quintana, J. Carpinteiro, A.M. Carro, R.A. Lorenzo, R. Cela, Determination of acidic drugs in sewage water by gas chromatography–mass spectrometry as tert-butyldimethylsilyl derivatives, J. Chromatogr. A, 985 (2003) 265–274.
  39. S. Castiglioni, R. Fanelli, D. Calamari, R. Bagnati, E. Zuccato, Methodological approaches for studying pharmaceuticals in the environment by comparing predicted and measured concentrations in river Po, Italy, Regul. Toxicol. Pharmacol., 39 (2004) 25–32.
  40. J.E. Drewes, P. Fox, M. Jekel, Occurrence of iodinated X-ray contrast media in domestic effluents and their fate during indirect potable reuse, J. Environ. Sci. Health Part A-Toxic/ Hazard. Subst. Environ. Eng., 36 (2001) 1633–1645.
  41. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: a national reconnaissance, Environ. Sci. Technol., 36 (2002) 1202–1211.
  42. F. Sacher, F.T. Lange, H.J. Brauch, I. Blankenhorn, Pharmaceuticals in groundwaters—analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany, J. Chromatogr. A, 938 (2001) 199–210.
  43. M. Clara, B. Strenn, N. Kreuzinger, Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration, Water Res., 38 (2004) 947–954.
  44. J.D. Cahill, E.T. Furlong, M.R. Burkhardt, D. Kolpin, L.G. Anderson, Determination of pharmaceutical compounds in surface- and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry, J. Chromatogr. A, 1041 (2004) 171–180.
  45. S.K. Korada, N.S. Yarla, S. Putta, A.S. Hanumakonda, D.B. Lakkappa, A. Bishayee, L. Scotti, M.T. Scotti, G. Aliev, M.A. Kamal, D.-Y. Lu, M.B.Y. Aycan, R. Reggi, M. Palmery, G. Ashraf, T. Alexiou, I. Peluso, Chapter 1 – A Critical Appraisal of Different Food Safety and Quality Management Tools to Accomplish Food Safety, A.M. Grumezescu, A.M. Holban, Eds., Food Safety and Preservation: Modern Biological Approaches to Improving Consumer Health, Elsevier, 2018, pp. 1–12.
  46. B. Kim, H.B. Pang, J. Kang, J.H. Park, E. Ruoslahti, M.J. Sailor, Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus, Nat. Commun., 9 (2018) 1969.
  47. P.K. Mutiyar, A.K. Mittal, Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges, Environ. Sci. Pollut. Res., 21 (2014) 7723–7736.
  48. G. Le Page, L Gunnarsson, J. Snape, C.R. Tyler, Integrating human and environmental health in antibiotic risk assessment: a critical analysis of protection goals, species sensitivity and antimicrobial resistance, Environ. Int., 109 (2017) 155–169.
  49. Q.-J. Wang, C.-H. Mo, Y.-W. Li, P. Gao, Y.-P. Tai, Y. Zhang, Z.-L. Ruan, J.-W. Xu, Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao, Environ. Pollut., 158 (2010) 2350–2358.
  50. V.D. Meena, M.L. Dotaniya, J.K. Saha, A.K. Patra, Antibiotics and antibiotic resistant bacteria in wastewater: impact on environment, soil microbial activity and human health, Afr. J. Microbiol. Res., 9 (2015) 965–978.
  51. S.A. Snyder, P. Westerhoff, Y. Yoon, D.L. Sedlak, Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry, Environ. Eng. Sci., 20 (2003) 449–469.
  52. P. Grenni, V. Ancona, A.B. Caracciolo, Ecological effects of antibiotics on natural ecosystems: a review, Microchem. J., 136 (2018) 25–39.
  53. I. Lysnyansky, I. Gerchman, I. Mikula, F. Gobbo, S. Catania, S. Levisohn, Molecular characterization of Enrofloxacin-acquired-resistance in mycoplasma synoviae field isolates, Antimicrob. Agents Chemother., 57 (2013) 3072–3077.
  54. R.P. Tasho, J.Y. Cho, Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review, Sci. Total Environ., 563 (2016) 366–376.
  55. E. Radu, M. Woegerbauer, M. Oismüller, N. Kreuzinger, Impact of Antibiotics of Anthropogenic Origin on Bacterial Soil Communities in Agricultural Ecosystems, International Symposium The Environment and the Industry, Simi 2017, Proceedings Book 2017.
  56. C. Bouki, D. Venieri, E. Diamadopoulos, Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review, Ecotoxicol. Environ. Saf., 91 (2013) 1–9.
  57. W. Yan, Y. Xiao, W. Yan, R. Ding, S. Wang, F. Zhao, The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a review, Chem. Eng. J., 358 (2018) 1421–1437.
  58. F. Barancheshme, M. Munir, Strategies to combat antibiotic resistance in the wastewater treatment plants, Front. Microbiol., 8 (2018) 2603.
  59. A. Pamreddy, M. Hidalgo, J. Havel, V. Salvadó, Determination of antibiotics (tetracyclines and sulfonamides) in biosolids by pressurized liquid extraction and liquid chromatography– tandem mass spectrometry, J. Chromatogr. A, 1298 (2013) 68–75.
  60. M.A. Neves, G.S. Silva, N.M. Brito, K.C.M. Araújo, E.P. Marques, L.K. Silva. Aqueous ultrasound-assisted extraction for the determination of fluoroquinolones in Mangrove sediment by high-performance liquid chromatography and fluorescence detector, J. Braz. Chem. Soc., 29 (2018) 24–32.
  61. E.S.S. Abdel-Hameed, M.S. Salman, M.A. Fadl, A. Elkhateeb, M.A. El-Awady, Chemical composition of hydrodistillation and solvent free microwave extraction of essential oils from Mentha piperita L. growing in Taif, Kingdom of Saudi Arabia, and their anticancer and antimicrobial activity, Orient. J. Chem., 34 (2018) 222–233.
  62. S.J. Lehotay, A.R. Lightfield, Simultaneous analysis of aminoglycosides with many other classes of drug residues in bovine tissues by ultrahigh-performance liquid chromatography– tandem mass spectrometry using an ion-pairing reagent added to final extracts, Anal. Bioanal. Chem., 410 (2018) 1095–1109.
  63. K. Sparbier, S. Schubert, U. Weller, C. Boogen, M. Kostrzewa, Matrix-assisted laser desorption ionization–time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics, J. Clin. Microbiol., 50 (2012) 927–937.
  64. L. Li, C. Guo, S. Fan, J. Lv, Y. Zhang, Y. Xu, J. Xu, Dynamic transport of antibiotics and antibiotic resistance genes under different treatment processes in a typical pharmaceutical wastewater treatment plant, Environ. Sci. Pollut. Res., 30 (2018) 1–8.
  65. X. Wang, M. Wang, K. Zhang, T. Hou, L. Zhang, C. Fei, T. Hang, Determination of virginiamycin M1 residue in tissues of swine and chicken by ultraperformance liquid chromatography tandem mass spectrometry, Food Chem., 250 (2018) 127–133.
  66. B.M. Peake, R. Braund, L.A. Tremblay, A.Y.C. Tong, Degradation of Pharmaceutical in Wastewater, In The Life-Cycle of Pharmaceuticals in the Environment, Elsevier, 2016, p. 153.
  67. P. Gharbani, A. Mehrizad, The effect of pH on nanosized ZnO catalyzed degradation of 4-chloro-2-nitrophenol via ozonation, Int. J. Nanosci. Nanotechnol., 8 (2012) 121–126.
  68. C. Yi, Q. Liao, W Deng, Y. Huang, J. Mao, B. Zhang, G. Wu, The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation, Sci. Total Environ., 684 (2019) 527–536.
  69. C. Regmi, Y.K.K. Shetri, T. Kim, D. Dhakal, S.W. Lee, Mechanistic understanding of enhanced photocatalytic activity of N-doped BiVO4 towards degradation of ibuprofen: an experimental and theoretical approach, Mol. Catal., 470 (2019) 8–18.
  70. T.A. Larsen,. J. Lienert, A. Joss, H. Siegrist, How to avoid pharmaceuticals in the aquatic environment, J. Biotechnol., 113 (2004) 295–304.
  71. C. Hartig, M. Ernst, M. Jekel, Membrane filtration of two sulphonamides in tertiary effluents and subsequent adsorption on activated carbon, Water Res., 35 (2001) 3998–4003.
  72. L.D. Nghiem, A. Manis, K. Soldenhoff, A.I. Schafer, Estrogenic hormone removal from wastewater using NF/RO membranes, J. Membr. Sci., 242 (2004) 37–45.
  73. L.D. Nghiem, A.I. Schafer, M. Elimelech, Pharmaceutical Retention mechanisms by nanofiltration membranes, Environ. Sci. Technol., 39 (2005) 7698–7705.
  74. M. Petrovic, S. Gonzalez, D. Barcelo, Analysis and removal of emerging contaminants in wastewater and drinking water, TrAC-Trends Anal. Chem., 22 (2003) 685–696.
  75. C. Zwiener, F.H. Frimmel, Oxidative treatment of pharmaceuticals in water, Water Res., 34 (2000) 1881–1885.
  76. T.A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H.J. Brauch, B.H. Gulde, G. Preuss, U. Wilme, N.Z. Seibert, Removal of pharmaceuticals during drinking water treatment, Environ. Sci. Technol., 36 (2002) 3855–3863.
  77. A.B.C. Alvares, C. Diaper, S.A. Parsons, Partial oxidation by ozone to remove recalcitrance from wastewaters—a review, Environ. Technol., 22 (2001) 409–427.
  78. B. Li, T. Zhang, Biodegradation and adsorption of antibiotics in the activated sludge process. Environ. Sci. Technol., 44 (2010) 3468–3473.
  79. A. Fabiańska, A. Białk-Bielińska, P. Stepnowski, S. Stolte, E.M. Siedlecka, Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation, J. Hazard. Mater., 280 (2014) 579–587.
  80. R.R. Giri, H. Ozaki, T. Ishida, R. Takanami, S. Taniguchi, Synergy of ozonation and photocatalysis to mineralize low concentration 2,4-dichlorophenoxyacetic acid in aqueous solution, Chemosphere, 66 (2007) 1610–1617.
  81. M. Hijosa-Valsero, R. Molina, H. Schikora, M. Muller, J.M. Bayona, Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma, J. Hazard. Mater., 262 (2013) 664–673.
  82. X. Liu, D. Yang, Y. Zhou, J. Zhang, L. Luo, S. Meng, S. Chen, M. Tan, Z. Li, L. Tang, Electrocatalytic properties of N-doped graphite felt in electro-Fenton process and degradation mechanism of levofloxacin, Chemosphere, 182 (2017) 306–315.
  83. X. Liu, Y. Zhou, J. Zhang, L. Luo, Y. Yang, H. Huang, H. Peng, L. Tang, Y. Mu, Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps, Chem. Eng. J., 347 (2018) 379–397.
  84. N. Barhoumi, L. Labiadh, M.A. Oturan, N. Oturan, A. Gadri, S. Ammar, E. Brillas, Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process, Chemosphere, 141 (2015) 250–257.
  85. Y. Gong, J. Li, Y. Zhang, M. Zhang, X. Tian, A. Wang, Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode, J. Hazard. Mater., 304 (2016) 320–328.
  86. F.C. Moreira, S. Garcia-Segura, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon- PTFE air-diffusion cathode and a boron-doped diamond or platinum anode, Appl. Catal., B, 160–161 (2014) 492–505.
  87. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Degradation of trimethoprim antibiotic by UVA photoelectro-Fenton process mediated by Fe(III)–carboxylate complexes, Appl. Catal., B, 162 (2015) 34–44.
  88. F.C. Moreira, J. Soler, M.F. Alpendurada, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes, Water Res., 105 (2016) 251–263.
  89. Y. Zhang, A. Wang, X. Tian, Z. Wen, H. Lv, D. Li, Efficient mineralization of the antibiotic trimethoprim by solar assisted photoelectro-Fenton process driven by a photovoltaic cell, J. Hazard. Mater., 318 (2016) 319–328.
  90. S. Bhattacharya, J. Yadav, Microbial P450 enzymes in bioremediation and drug discovery: emerging potentials and challenges, Curr. Protein Pept. Sci., 19 (2018) 75–86.
  91. G.T. Guyer, N.H. Ince, Degradation of diclofenac in water by homogeneous and heterogeneous sonolysis, Ultrason. Sonochem., 18 (2011) 114–119.
  92. V. Naddeo, V. Belgiorno, D. Kassinos, D. Mantzavinos, S. Meric, Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters, Ultrason. Sonochem., 17 (2010) 179–185.
  93. M.M. Sein, M. Zedda, J. Tuerk, T.C. Schmidt, A. Golloch, C.V. Sonntag, Oxidation of diclofenac with ozone in aqueous solution, Environ. Sci. Technol., 42 (2008) 6656–6662.
  94. J.F. Garcia-Araya, F.J. Beltran, A. Aguinaco, Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes, J. Chem. Technol. Biotechnol., 85 (2010) 798–804.
  95. V. Naddeo, V. Belgiorno, D. Ricco, D. Kassinos, Degradation of diclofenac during sonolysis, ozonation and their simultaneous application, Ultrason. Sonochem., 16 (2009) 790–794.
  96. S. He, J. Wang, L. Ye, Y. Zhang, J. Yu, Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter, Radiat. Phys. Chem., 105 (2014) 104–108.
  97. D. Vogna, R. Marotta, A. Napolitano, R. Andreozzi, M. d’Ischia, Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone, Water Res., 38 (2004) 414–422.
  98. B. Manu, Mahamood, Degradation kinetics of diclofenac in water by Fenton’s oxidation, J. Sustain. Energy Environ., 3 (2012) 173–176.
  99. L.A. Perez-Estrada, S. Malato, W. Gernjak, A. Aguera, E.M. Thurman, I. Ferrer, A.R. Fernandez-Alba, Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway, Environ. Sci. Technol., 39 (2005) 8300–8306.
  100. J. Hofmann, U. Freier, M. Wecks, S. Hohmann, Degradation of diclofenac in water by heterogeneous catalytic oxidation with H2O2, Appl. Catal. B, 70 (2007) 447–451.
  101. D. Kanakaraju, C.A. Motti, B.D. Glass, M. Oelgemoller, Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors, Environ. Chem., 11 (2014) 51–62.
  102. W. Sun, H. Chu, B. Dong, D. Cao, S. Zheng, The degradation of naproxen and diclofenac by a nano-TiO2/diatomite photocatalytic reactor, Int. J. Electrochem. Sci., 9 (2014) 4566–4573.
  103. B. Czech, K. Rubinowska, TiO2-assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water, Adsorption, 19 (2013) 619–630.
  104. V.C. Sarasidis, K.V. Plakas, S.I. Patsios, A.J. Karabelas, Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters, Chem. Eng. J., 239 (2014) 299–311.
  105. L. Rizzo, S. Meric, D. Kassinos, M. Guida, F. Russo, V. Belgiorno, Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays, Water Res., 43 (2009) 979–988.
  106. P. Calza, V.A. Sakkas, C. Medana, C. Baiocchi, A.A. Dimou, A.A. Pelizzetti, A. Albanis, Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions, Appl. Catal., B, 67 (2006) 197–205.
  107. A. Aguinaco, F.J. Beltran, J.F. Garcia-Araya, A. Oropesa, Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: influence of variables, Chem. Eng. J., 189–190 (2012) 275–282.
  108. D. Dobrin, C. Bradu, M. Magureanu, N.B. Mandache, V.I. Parvulescu, Degradation of diclofenac in water using a pulsed corona discharge, Chem. Eng. J., 234 (2013) 389–396.
  109. S. Rong, Y. Sun, Z. Zhao, H. Wang, Dielectric barrier discharge induced degradation of diclofenac in aqueous solution, Water Sci. Technol., 69 (2014) 76–83.
  110. P. Iovino, S. Chianese, S. Canzano, M. Prisciandaro, D. Musmarra, Degradation of ibuprofen in aqueous solution with UV light: the effect of reactor volume and pH, Water Air Soil Pollut., 227 (2016) 1–9.
  111. M.J. Quero-Pastor, M.C. Garrido-Perez, A. Acevedo, J.M. Quiroga, Ozonation of ibuprofen: a degradation and toxicity study, Sci. Total Environ., 466–467 (2014) 957–964.
  112. E. Illes, E. Takacs, A. Dombi, K. Gajda-Schrantz, G. Racz, K. Gonter, L. Wojnarovits, Hydroxyl radical induced degradation of ibuprofen, Sci. Total Environ., 447 (2013) 286–292.
  113. J. Madhavan, F. Grieser, M. Ashokkumar, Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments, J. Hazard. Mater., 178 (2010) 202–208.
  114. F. Mendez-Arriaga, R.A. Torres-Palma, C. Petrier, S. Esplugas, J. Gimenez, C. Pulgarin, Ultrasonic treatment of water contaminated with ibuprofen, Water Res., 42 (2008) 4243–4248.
  115. T. Scheers, L. Appels, B. Dirkx, L. Jacoby, L. Van Vaeck, B. Van der Bruggen, J. Luyten, J. Degreve, J. Van Impe, R. Dewil, Evaluation of peroxide based advanced oxidation processes (AOPs) for the degradation of ibuprofen in water, Desal. Wat. Treat., 50 (2012) 189–197.
  116. F. Mendez-Arriaga, S. Esplugas, J. Gimenez, Degradation of the emerging contaminant ibuprofen in water by photo- Fenton, Water Res., 44 (2010) 589–595.
  117. B. Zheng, C. Li,. J. Zhang, Z. Zheng, Dielectric barrier discharge induced the degradation of the emerging contaminant ibuprofen in aqueous solutions, Desal. Water Treat., 52 (2014) 4469–4475.
  118. M. Marković, M. Jović, D. Stanković, V. Kovačević, G. Roglić, G. Gojgić-Cvijović, D. Manojlović, Application of nonthermal plasma reactor and Fenton reaction for degradation of ibuprofen, Sci. Total Environ., 505 (2015) 1148–1155.
  119. R. Banaschik, P. Lukes, H. Jablonowski, M.U. Hammer, K.D. Weltmann, J.F. Kolb, Potential of pulsed corona discharges generated in water for the degradation of persistent pharmaceutical residues, Water Res., 84 (2015) 127–135.
  120. J. Zeng, B. Yang, X. Wang, Z. Li, X. Zhang, L. Lei, Degradation of pharmaceutical contaminant ibuprofen in aqueous solution by cylindrical wetted-wall corona discharge, Chem. Eng. J., 267 (2015) 282–288.
  121. L. Ge, C. Halsall, C.E. Chen, P. Zhang, Q. Dong, Z. Yao, Exploring the aquatic photodegradation of two ionisable fluoroquinolone antibiotics-gatifloxacin and balofloxacin: degradation kinetics, photobyproducts and risk to the aquatic environment, Sci. Total Environ., 633 (2018) 1192–1197.
  122. L. Ling, X. Huang, M. Li, W.X. Zhang, Mapping the reactions in a single zerovalent Iron nanoparticle, Environ. Sci. Technol., 51 (2017) 14293–14300.
  123. T. Saitoh, T. Shibayama, Removal and degradation of β-lactam antibiotics in water using didodecyldimethylammonium bromide-modified montmorillonite organoclay, J. Hazard. Mater., 317 (2016) 677–685.
  124. S. Bischoff, T. Walter, M. Gerigk, M. Ebert, R. Vogelmann, Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department, BMC Infect. Dis., 18 (2018) 56.
  125. S.H. Fan,Y. Shen, L.P. Chen, X.L. Gu, Y.G. Li, Z.B. Shi, Photocatalytic degradation of Cefradine in water over immobilized TiO2 catalyst in continuous-flow reactor, Chin. J. Catal., 23 (2002) 109–112.
  126. B. Thokchom, P. Qiu, M. Cui, B. Park, A.B. Pandit, J. Khim, Magnetic Pd@Fe3O4 composite nanostructure as recoverable catalyst for sonoelectrohybrid degradation of ibuprofen, Ultrason. Sonochem., 34 (2017) 262–272.
  127. Y. Zhou, X. Liu, Y. Zhao, S. Luo, L. Wang, Y. Yang, M.A. Oturan, Y. Mu, Structure-based synergistic mechanism for the degradation of typical antibiotics in electro-Fenton process using Pd–Fe3O4 model catalyst: theoretical and experimental study, J. Catal., 365 (2018) 184–194.
  128. M. El-Kemary, H. El-Shamy, I. El-Mehasseb, Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles, J. Lumin., 130 (2010) 2327–2331.
  129. N.F.F, Moreira, C.A. Orge, A.R. Ribeiro, J.L. Faria, O.C. Nunes, M.F.R. Pereira, A.M.T. Silva, Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater, Water Res., 87 (2015) 87–96.
  130. D. Li, X. Guo, H. Song, T. Sun, J. Wan, Preparation of RuO2-TiO2/nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium, J. Hazard. Mater., 351 (2018) 250–259.
  131. R.D.C. Soltani, M. Mashayekhi, M. Naderi, G. Boczkaj, S. Jorfi, M. Safari, Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst, Ultrason. Sonochem., 55 (2019) 117–124.
  132. G. Zhang,Y. Ding, W. Nie, H Tang, Efficient degradation of drug ibuprofen through catalytic activation of peroxymonosulfate by Fe3C embedded on carbon, J. Environ. Sci., 78 (2019) 1–12.
  133. S. Miralles-Cuevas, I. Oller, J.A.S. Perez, S. Malato, Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH, Water Res., 64 (2014) 23–31.
  134. A.-Guevara, G. Cinthia, M.-Ramírez, E Iliana, H.-Ramírez, Aracely, J. Rincón, Juan., L.Á.J. Antonio., R.-L.J. Luis., Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light, Ceram Int., 43 (2017) 5068–5079.
  135. A.G. Trovo, R.F.P. Nogueira, A. Agüera, A.R, Fernandez- Alba, S. Malato, Degradation of the antibiotic amoxicillin by photo-Fenton process–chemical and toxicological assessment, Water Res., 45 (2011) 1394–1402.
  136. Α. Koltsakidou, M. Antonopoulou, M. Sykiotou, Ε. Εvgenidou, I. Konstantinou, D. Lambropoulou, Photo-Fenton and Fentonlike processes for the treatment of the antineoplastic drug 5-fluorouracil under simulated solar radiation, Environ. Sci. Pollut. Res., 24 (2017) 4791–4800.
  137. A. Carabin, P. Drogui, D. Robert, Photo-degradation of carbamazepine using TiO2 suspended photocatalysts, J. Taiwan Inst. Chem. Eng., 54 (2015) 109–117.
  138. M. Drosos, M. Ren, F.H. Frimmel, The effect of NOM to TiO2: Interactions and photocatalytic behavior, Appl. Catal. B Environ., 165 (2015) 328–334.
  139. J.A.L. Perini, B.C Silva, A.L Tonetti, R.F.P. Nogueira, Photo- Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent, Environ. Sci. Pollut. Res., 24 (2017) 6233–6240.
  140. P. Villegas-Guzmana, J. Silva-Agredoa, D. González-Gómeza, A.L. Giraldo-Aguirreb, O. Flórez-Acostab, R.A. Torres-Palmaa, Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin, J. Environ. Sci. Health A, 50 (2015) 40–48.
  141. C.L. Bianchi, B. Sacchi, C. Pirola, F. Demartin, G. Cerrato, S. Morandi, V. Capucci, Aspirin and paracetamol removal using a commercial micro-sized TiO2 catalyst in deionized and tap water, Environ. Sci. Pollut. Res., 24 (2017) 12646–12654.