References

  1. N.M. Mahmoodi, J. Abdi, M. Oveisi, M.A. Asli, M. Vossoughi, Metal-organic framework (MIL-100 (Fe)): synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling, Mater. Res. Bull., 100 (2018) 357–366.
  2. N.M. Mahmoodi, N.Y. Limaee, M. Arami, S. Borhany, M. Mohammad-Taheri, Nanophotocatalysis using nanoparticles of titania: mineralization and finite element modelling of solophenyl dye decolorization, J. Photochem. Photobiol., A, 189 (2007) 1–6.
  3. A. Naseri, M. Samadi, N.M. Mahmoodi, A. Pourjavadi, H. Mehdipour, A.Z. Moshfegh, Tuning composition of electrospun ZnO/CuO nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants, J. Phys. Chem. C, 121 (2017) 3327–3338.
  4. B. Hayati, A. Maleki, F. Najafi, H. Daraei, F. Gharibi, G. McKay, Adsorption of Pb2+, Ni2+, Cu2+, Co2+ metal ions from aqueous solution by PPI/SiO2 as new high-performance adsorbent: preparation, characterization, isotherm, kinetic, thermodynamic studies, J. Mol. Liq. 237 (2017) 428–436.
  5. N.M. Mahmoodi, Manganese ferrite nanoparticle: synthesis, characterization, and photocatalytic dye degradation ability, Desal. Water Treat., 53 (2015) 84–90.
  6. B. Hayati, N.M. Mahmoodi, A. Maleki, Dendrimer–titania nanocomposite: synthesis and dye-removal capacity, Res. Chem. Int., 41 (2015) 3743–3757.
  7. N.M. Mahmoodi, Dendrimer functionalized nanoarchitecture: synthesis and binary system dye removal, J. Taiwan Inst. Chem. Eng., 45 (2014) 2008–2020.
  8. O. Tavakoli, V. Goodarzi, M.R. Saeb, N.M. Mahmoodi, R. Borja, Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger, J. Hazard. Mater., 334 (2017) 256–266.
  9. N.M. Mahmoodi, Nickel ferrite nanoparticle: synthesis, modification by surfactant and dye removal ability, Water Air Soil Pollut., 224 (2013) 1419, doi: 10.1007/s11270-012-1419-7.
  10. S.M. Ibrahim, A.A. Badawy, H.A. Essawy, Improvement of dyes removal from aqueous solution by nanosized cobalt ferrite treated with humic acid during coprecipitation, J. Nanostruct. Chem., 9 (2019) 281–298.
  11. N.M. Mahmoodi, J. Abdi, D. Bastani, Direct dyes removal using modified magnetic ferrite nanoparticle, J. Environ. Health Sci. Eng., 12 (2014) 96, doi: 10.1186/2052-336X-12-96.
  12. A. Almasian, M.E. Olya, N.M. Mahmoodi, Synthesis of polyacrylonitrile/polyamidoamine composite nanofibers using electrospinning technique and their dye removal capacity, J. Taiwan Inst. Chem. Eng., 49 (2015) 119–128
  13. N.M. Mahmoodi, B. Hayati, H. Bahrami, M. Arami, Dye adsorption and desorption properties of Mentha pulegium in single and binary systems, J. Appl. Polym. Sci., 122 (2011) 1489–1499.
  14. E. Haque, J.W. Jun, S.H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF- 235), J. Hazard. Mater., 185 (2011) 507–511.
  15. N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review, J. Hazard. Mater., 244 (2013) 444–456.
  16. G. Ren, Z. Li, W. Yang, M. Faheem, J. Xing, X. Zou, Q. Pan, G. Zhu, Y. Du, ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing, Sens. Actuators, B, 284 (2019) 421–427.
  17. C. Yang, L. Yu, R. Chen, J. Cheng, Y. Chen, Y. Hu, Congo red adsorption on metal-organic frameworks, MIL-101 and ZIF- 8: kinetics, isotherm and thermodynamic studies, 94 (2017) 211–221.
  18. F. Xiao, J. Cheng, X. Fan, C. Yan, Y. Hu, Adsorptive removal of the hazardous anionic dye Congo red and mechanistic study of ZIF-8, Desal. Water Treat., 101 (2018) 291–300.
  19. R. Gong, Y. Jin, F. Chen, J. Chen, Z. Liu, Enhanced malachite green removal from aqueous solution by citric acid modified rice straw, J. Hazard. Mater., 137 (2006) 865–870.
  20. S.D. Khattri, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption, J. Hazard. Mater., 167 (2009) 1089–1094.
  21. A. Verma, S. Thakur, G. Mamba, R.K. Gupta, P. Thakur, V.K. Thakur, Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye, Int. J. Biol. Macromol., 148 (2020) 1130–1139.
  22. A. Malik, M. Nath, Multicore‒shell nanocomposite formed by encapsulation of WO3 in zeolitic imidazolate framework (ZIF-8): as an efficient photocatalyst, J. Environ. Chem. Eng., 7 (2019) 103401, doi: 10.1016/j.jece.2019.103401.
  23. N.M. Mahmoodi, H. Chamani, H.-R. Kariminia, Functionalized copper oxide–zinc oxide nanocomposite: synthesis and genetic programming model of dye adsorption, Desal. Water Treat., 57 (2016) 18755–18769.
  24. J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis, Springer, Switzerland, 2017.
  25. E.L. Bustamante, J.L. Fernández, J.M. Zamaro, Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature, J. Colloid Interface Sci., 424 (2014) 37–43.
  26. X. He, D.-P. Yang, X. Zhang, M. Liu, Z. Kang, C. Lin, N. Jia, R. Luque, Waste eggshell membrane-templated CuO-ZnO nanocomposites with enhanced adsorption, catalysis and antibacterial properties for water purification, Chem. Eng. J., 369 (2019) 621–633.
  27. G.N.S. Vijayakumar, S. Devashankar, M. Rathnakumari, P. Sureshkumar, Synthesis of electrospun ZnO/CuO nanocomposite fibers and their dielectric and non-linear optic studies, J. Alloys Compd., 507 (2010) 225–229.
  28. Y. Xie, R. Xing, Q. Li, L. Xu, H. Song, Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing, Sens. Actuators B, 211 (2015) 255–262.
  29. X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies, Angew. Chem. Int. Ed., 45 (2006) 1557–1559.
  30. S. Gadipelli, T. Zhao, S.A. Shevlin, Z. Guo, Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt–nitrogen–carbon framework system, Energy Environ. Sci., 9 (2016) 1661–1667.
  31. E.E. Sann, Y. Pan, Z. Gao, S. Zhan, F. Xia, Highly hydrophobic ZIF-8 particles and application for oil-water separation, Sep. Purif. Technol., 206 (2018) 186–191.
  32. M. Oveisi, N.M. Mahmoodi, M. Alinia Asli, Halogen lamp activated nanocomposites as nanoporous photocatalysts: synthesis, characterization, and pollutant degradation mechanism, J. Mol. Liq., 281 (2019) 389–400.
  33. Y. Hu, H. Kazemian, S. Rohani, Y. Huang, Y. Song, In situ high pressure study of ZIF-8 by FTIR spectroscopy, Chem. Commun., 47 (2011) 12694–12696.
  34. J.-B. Huo, L. Xu, J.-C.E. Yang, H.-J. Cui, B. Yuan, M.-L. Fu, Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As(III) from water, Colloids Surf., A, 539 (2018) 59–68.
  35. N. Li, L. Zhou, X. Jin, G. Owens, Z. Chen, Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework, J. Hazard. Mater., 366 (2019) 563–572.
  36. M. He, J. Yao, Q. Liu, K. Wang, F. Chen, H. Wang, Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution, Microporous Mesoporous Mater., 184 (2014) 55–60.
  37. T. Hurma, Effect of boron doping concentration on structural optical electrical properties of nanostructured ZnO films, J. Mol. Struct., 1189 (2019) 1–7.
  38. H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve the selectivity of formaldehyde gas sensor, ACS Sens., 1 (2016) 243–250.
  39. G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33 (2008) 399–447.
  40. N.M. Mahmoodi, M. Oveisi, M. Bakhtiari, B. Hayati, A.A. Shekarchi, A. Bagheri, S. Rahimi, Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework-Graphene oxide nanocomposites and pollutant removal from water, J. Mol. Liq., 282 (2019) 115–130.
  41. N.M. Mahmoodi, J. Abdi, Surface modified cobalt ferrite nanoparticles with cationic surfactant: synthesis, multicomponent dye removal modeling and selectivity analysis, Prog. Color Colorants Coat., 12 (2019) 163–177.
  42. S.P. Mishra, M.R. Ghosh, Use of silver impregnated activated carbon (SAC) for Cr(VI) removal, J. Environ. Chem. Eng., 8 (2020) 103641, doi: 10.1016/j.jece.2019.103641.
  43. F. Nekouei, S. Nekouei, I. Tyagi, V.K. Gupta, Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent, J. Mol. Liq., 201 (2015) 124–133.
  44. N.M. Mahmoodi, Z. Hosseinabadi-Farahani, F. Bagherpour, M.R. Khoshrou, H. Chamani, F. Forouzeshfar, Synthesis of CuO-NiO nanocomposite and dye adsorption modeling using artificial neural network, Desal. Water Treat., 57 (2016) 17220–17229.
  45. N.M. Mahmoodi, Z. Hosseinabadi-Farahani, H. Chamani, Synthesis of nanostructured adsorbent and dye adsorption modeling by an intelligent model for multicomponent systems, Korean J. Chem. Eng., 33 (2016) 902–913.