References

  1. K.-M. Wollin, H.P.A. Illing, Limit Value Setting in Different Areas of Regulatory Toxicology, F.X. Reichl, M. Schwenk, Eds., Regulatory Toxicology, Springer, Berlin, Heidelberg, 2014, https://doi.org/10.1007/978-3-642-35374-1_81.
  2. D. Brown, Effects of colorants in the aquatic environment, Ecotox. Environ. Saf., 13 (1987) 139–147.
  3. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  4. S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini, H. Hamitouche, Electro-coagulation process applied to wastewater containing dyes from textile industry, Chem. Eng. Process., 49 (2010) 1176–1182.
  5. T. Shu-Hui, M.A.A. Zaini, Dyes – Classification and Effective Removal Techniques, J.C. Taylor, Ed., Advances in Chemistry Research, Nova Science Publishers, Inc., New York., Vol. 30, 2016, pp. 19–34.
  6. I. Abdelfattah, F. Nasr, A. Shana, Cost-effective physicochemical treatment of carpet industrial wastewater for reuse, Egypt. J. Chem., 62 (2019) 609–620.
  7. N.K. Daud, U.G. Akpan, B.H. Hameed, Decolorization of sunzol black DN conc. in aqueous solution by Fenton oxidation process, effect of system parameters and kinetic study, Desal. Water Treat., 37 (2012) 1–7.
  8. Y. Shiva Shankar, K. Ankur, P. Bhushan, D. Mohan, Utilization of Water Treatment Plant (WTP) Sludge for Pretreatment of Dye Wastewater Using Coagulation/Flocculation, A. Kalamdhad, J. Singh, K. Dhamodharan, Eds., Advances in Waste Management, Springer, Singapore, 2019, pp. 107–121, https://doi. org/10.1007/978-981-13-0215-2_8.
  9. M.F. Abid, M.A. Zablouk, A.M. Abid-Alameer, Experimental study of dye removal fromindustrial wastewater by membrane technologiesof reverse osmosis and nanofiltration, Iran. J. Environ. Health, 9 (2012) 17.
  10. M.M. Hassan, C.M. Carr, A critical review on recent advancements of the removal of reactive dyes from dye house effluent by ion-exchange adsorbents, Chemosphere, 209 (2018) 201–219.
  11. A. Dabrowski, Adsorption-from theory to practice, Adv. Colloid Interface, 9 (2001) 135–224.
  12. R.C. Bansal, G. Meenakshi, Activated Carbon Adsorption, Taylor & Francis Group, LLC, 2005.
  13. A. Mudhoo, D. Beekaroo, Adsorption of Reactive Red 158 Dye by Chemically Treated Cocos nucifera L. Shell Powder, SpringerBriefs in Molecular Science, 2011, pp. 1–65.
  14. S. Ming-Twang, L. Lin-Zhi, M.A.A. Zaini, Q. Zhi-Yong, A.Y. Pei-Yee, Activated Carbon for Dyes Adsorption in Aqueous Solution, J.A. Daniels, Ed., Advances in Environmental Research, Vol. 36, Nova Science Publishers, Inc., New York., 2015, pp. 217–234.
  15. R.S. Juang, F.C. Wu, R.L. Tseng, The ability of activated clay for the adsorption of dyes from aqueous solutions, Environ. Technol., 18 (1997) 525–531.
  16. J.P. Castro, J.R.C. Nobre, A. Napoli, M.L. Bianchi, J.C. Moulin, B.S. Chiou, G.H. Tonoli, Massaranduba sawdust: a potential source of charcoal and activated carbon, Polymers., 11 (2019) 1276.
  17. B.N. Thomas, S.C. George, Production of activated carbon from natural sources, Trends Green Chem., 1 (2015) 1–7.
  18. K. Larbi, N. Benderdouche, L. Reinert, J.M. Leveque, S. Delpeux, M. Benadjemia, B. Bestani, L. Duclaux, Tailored activated carbons prepared by phosphoric activation of apricot, date and loquat stones and their mixtures; relation between the pore size and the composition in biopolymer, Desal. Water Treat., 120 (2018) 217–227.
  19. J. Junaid Saleem, U. Bin Shahid, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9 (2019) 775–802.
  20. N. Benderdouche, B. Bestani, B. Benstaali, Z. Derriche, Enhancement of the adsorptive properties of a desert Salsola Vermiculata species, Adsorpt. Sci. Technol., 21 (2003) 739–750.
  21. N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Sawdustbased activated carbon ability in the removal of phenol-based organics from, Desal. Water Treat., 57 (2015) 5529–5545.
  22. A. Ouldmoumna, L. Reinert, N. Benderdouche, B. Bestani, L. Duclaux, Characterization and application of three novel biosorbents Eucalyptus globulus, Cynara cardunculus and Prunus cerasefera to dye removal, Desal. Water Treat., 51 (2013) 3527–3538.
  23. D.L. Han, P.A. Cao, M. Popa, H. Nguyen Xuan, Hybrid composite based on magnetite/chitosan for 2,4-d and chrysoidine removal, Vietnam. J. Sci. Technol., 56 (2018) 184.
  24. M. Matheswaran, T. Karunanithi, Adsorption of Chrysoidine R by using fly ash in batch process, J. Hazard. Mater., 145 (2007) 154–161.
  25. M.K. Purkait, D.S. Gusain, S. Das Gupta, S. De, Adsorption Behavior of Chrysoidine dye on activated charcoal and its regeneration characteristics by using different surfactants, Sep. Sci. Technol., 39 (2005) 2419–2440.
  26. M.W. Ashraf, N. Abulibdeh, A. Salam, Adsorption studies of textile dye (Chrysoidine) from aqueous solutions using activated sawdust, Int. J. Chem. Eng., 2019 (2019) 1–8.
  27. V.M. Nurchi, M. Crespo-Alonso, R. Biesuz, G. Alberti, M.I. Pilo, N. Spano, G. Sanna, Sorption of chrysoidine by row cork and cork entrappedin calcium alginate, Arab. J. Chem., 7 (2014) 133–138.
  28. S.K. Goyal, Use of rosaniline hydrochloride dye for atmospheric SO2 determination and method sensitivity analysis, J. Environ. Monit., 3 (2001) 666–670.
  29. M. El-Azazy, A.S. El-Shafie, A. Ashraf, A.A. Issa, Eco-structured biosorptive removal of Basic Fuchsin using pistachio nutshells: a definitive screening design—based approach, Appl. Sci., 9 (2019) 4855.
  30. B. Bestani, N. Benderdouche, B. Benstaali, A. Addou, Adsorption of Methylene Blue and iodine from aqueous solutions by a desert Salsola vermiculata species, Bioresources, 99 (2008) 8441–8444.
  31. ASTM, Standard Test Method for Determination of Iodine Number of Activated Carbon, ASTM Annual Book, Vol. 4, 1999, D4607–94, Section 15.
  32. A. Belayachi, B. Bestani, A. Bendraoua, N. Benderdouche, L. Duclaux, The influence of surface functionalization of activated carbon on dyes and metal ion removal from aqueous media, Desal. Water Treat., 57 (2015) 17557–17569.
  33. C. Kaewprasit, E. Hequet, N. Abidi, J.P. Gourlo, Application of Methylene Blue adsorption to cotton fiber specific surface area measurement: Part I. methodology, J. Cotton. Sci., 2 (1998) 164–173.
  34. H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  35. L.H. Noszko, A. Bota, A. Simay, L.G. Nagy, Preparation of activated carbon from the by-products of agricultural industry, Periodica Polytechnica Chem. Eng., 28 (1984) 293–297.
  36. A. Cleiton, C. Nunes e Mario, Guerreiro, Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers, Quim. Nova, 34 (2011) 472–476.
  37. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  38. H.M.F. Freundlich, Uber die adsorption in losungen, Zeitschrift Physikalische Chemie., 57 (1906) 385–470.
  39. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pieroti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  40. L.M. Sun, F. Meunier, Adsorption. Theoretical aspects. Engineering techniques - unit operations - chemical reaction engineering, Proc. Eng. Treaty J., 2730 (2003).
  41. SUN, Lian-Ming et MEUNIER, Francis, Adsorption, Aspects théoriques, Techniques de l’ingénieur, Génie des procédés, 2003, vol. 2, N° J2730, 1–16.
  42. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials, J. Colloid Interface Sci., 34 (2010) 497–507.
  43. S. Lagergren, Zur theorie der sogenannten adsorption geloester stoffe. K. Sven. Vetenskapsakad. Handl., 24 (1898) 1–39.
  44. Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
  45. W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div. Proceed. Am. Soc. Civil Eng., 89 (1963) 31–59.
  46. S. Attouti, B. Bestani, N. Benderdouche, L. Duclaux, Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents, Water Res., 47 (2013) 3375–3388.
  47. F. Nemchi, B. Bestani, N. Benderdouche, M. Belhakem, L. Duclaux, Enhancement of Ni2+ removal capacity of activated carbons obtained from Mediterranean Ulva lactuca and Systoceira stricta algal species, J. Environ. Chem. Eng., 5 (2017) 2337–2345.
  48. Z. Derikvand, S. Akbari, G. Kouchakzadeh, A. Azadbakht, A. Nemati, High performance removal of Azo and cationic dyes pollutants with Mn-aluminophosphate particles: kinetics, thermodynamics, and adsorption equilibrium studies, Russ. J. Phys. Chem. A, 93 (2019) 2604–2612.
  49. M. El Haddad, Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: equilibrium, kinetics, and thermodynamics, J. Taibah Univ. Sci., 10 (2016) 664–674.
  50. E.A. Moawed, M.F. El-Shahat, Equilibrium, kinetic and thermodynamic studies of the removal of triphenyl methane dyes from wastewater using iodopolyurethane powder, J. Taibah Univ. Sci., 10 (2016) 46–55.