References

  1. D.J. Lapworth, N. Baran, M.E. Stuart, R.S. Ward, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence, Environ. Pollut., 163 (2012) 287–303.
  2. G. Moussavi, M. Rezaei, M. Pourakbar, Comparing VUV and VUV/Fe2+ processes for decomposition of cloxacillin antibiotic: degradation rate and pathways, mineralization and by-product analysis, Chem. Eng. J., 332 (2018) 140–149.
  3. B.M. Sharma, J. Bečanová, M. Scheringer, A. Sharma, G.K. Bharat, P.G. Whitehead, J. Klánová, L. Nizzetto, Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India, Sci. Total Environ., 646 (2019) 1459–1467.
  4. G. Moussavi, M. Pourakbar, S. Shekoohiyan, M. Satari, The photochemical decomposition and detoxification of bisphenol A in the VUV/H2O2 process: degradation, mineralization, and cytotoxicity assessment, Chem. Eng. J., 331 (2018) 755–764.
  5. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu, Q. Wei, D. Wei, A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches, J. Hazard. Mater., 387 (2020) 1, doi: 10.1016/j. jhazmat.2019.121682.
  6. M. Pourakbar, G. Moussavi, S. Shekoohiyan, Homogenous VUV advanced oxidation process for enhanced degradation and mineralization of antibiotics in contaminated water, Ecotoxicol. Environ. Saf., 125 (2016) 72–77.
  7. S. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J. Hazard. Mater., 149 (2007) 631–642.
  8. O.A. Alsager, M.N. Alnajrani, H.A. Abuelizz, I.A. Aldaghmani, Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity, Ecotoxicol. Environ. Saf., 158 (2018) 114–122.
  9. T. Wang, X. Pan, W. Ben, J. Wang, P. Hou, Z. Qiang, Adsorptive removal of antibiotics from water using magnetic ion exchange resin, J. Environ. Sci., 52 (2017) 111–117.
  10. K. Yaghmaeian, G. Moussavi, A. Alahabadi, Removal of amoxicillin from contaminated water using NH4Cl-activated carbon: continuous flow fixed-bed adsorption and catalytic ozonation regeneration, Chem. Eng. J., 236 (2014) 538–544.
  11. M.-f. Li, Y.-g. Liu, G.-m. Zeng, N. Liu, S.-b. Liu, Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: a review, Chemosphere, 226 (2019) 360–380.
  12. H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide, J. Hazard. Mater., 282 (2015) 201–207.
  13. G. Moussavi, Z. Hossaini, M. Pourakbar, High-rate adsorption of acetaminophen from the contaminated water onto doubleoxidized graphene oxide, Chem. Eng. J., 287 (2016) 665–673.
  14. J. Miao, F. Wang, Y. Chen, Y. Zhu, Y. Zhou, S. Zhang, The adsorption performance of tetracyclines on magnetic graphene oxide: a novel antibiotics absorbent, Appl. Surf. Sci., 475 (2019) 549–558.
  15. R. Rostamian, H. Behnejad, A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets, Ecotoxicol. Environ. Saf., 147 (2018) 117–123.
  16. P. Zarrintaj, M. Jouyandeh, M.R. Ganjali, B.S. Hadavand, M. Mozafari, S.S. Sheiko, M. Vatankhah-Varnoosfaderani, T.J. Gutiérrez, M.R. Saeb, Thermo-sensitive polymers in medicine: a review, Eur. Polym. J., 117 (2019) 402–423.
  17. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1957) 1339, doi: 10.1021/ja01539a017.
  18. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
  19. Y. Chen, Y. Niu, T. Tian, J. Zhang, Y. Wang, Y. Li, L.-C. Qin, Microbial reduction of graphene oxide by Azotobacter chroococcum, Chem. Phys. Lett., 677 (2017) 143–147.
  20. A. Morfin-Gutiérrez, H.I. Meléndez-Ortiz, B.A. Puente-Urbina, L.A. García-Cerda, Synthesis of poly(N-vinylcaprolactam)-grafted magnetite nanocomposites for magnetic hyperthermia, J. Nanomater., 2018 (2018) 3–4.
  21. Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Green preparation of reduced graphene oxide for sensing and energy storage applications, Sci. Rep., 4 (2014) 3, doi: 10.1038/ srep04684.
  22. M.Z. Ansari, W.A. Siddiqui, Deoxygenation of graphene oxide using biocompatible reducing agent Ficus carica (dried ripe fig), J. Nanostruct. Chem., 8 (2018) 431–440.
  23. S. Kozanogˇ lu, T. Özdemir, A. Usanmaz, Polymerization of N-vinylcaprolactam and characterization of poly(N-vinylcaprolactam), J. Macromol. Sci. Part A Pure Appl. Chem., 48 (2011) 467–477.
  24. M.D. Pravin, S.F. Chris, A. Gnanamani, Preparation, characterization and reusability efficacy of amine-functionalized graphene oxide-polyphenol oxidase complex for removal of phenol from aqueous phase, RSC Adv., 8 (2018) 38416–38424.
  25. M. Naderi, Chapter 14 - Surface Area: Brunauer–Emmett–Teller (BET), S. Tarleton, Ed., Progress in Filtration and Separation, Academic Press, Oxford, 2015, pp. 585–608.
  26. A.Y.S. Eng, C.K. Chua, M. Pumera, Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling, Nanoscale, 7 (2015) 20256–20266.
  27. A.I. Abd-Elhamid, E.A. Kamoun, A.A. El-Shanshory, H.M.A. Soliman, H.F. Aly, Evaluation of graphene oxideactivated carbon as effective composite adsorbent toward the removal of cationic dyes: composite preparation, characterization and adsorption parameters, J. Mol. Liq., 279 (2019) 530–539.
  28. L.-C. Hsu, Y.-T. Liu, C.-H. Syu, M.-H. Huang, Y.-M. Tzou, H.Y. Teah, Adsorption of tetracycline on Fe (hydr)oxides: effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition in various molar ratios, R. Soc. Open Sci., 5 (2018) 4–7, doi: 10.1098/ rsos.171941.
  29. Q. Fanyao, P.C. Morais, The pH dependence of the surface charge density in oxide-based semiconductor nanoparticles immersed in aqueous solution, IEEE Trans. Magn., 37 (2001) 2654–2656.
  30. F. Qu, P.C. Morais, Energy levels in metal oxide semiconductor quantum dots in water-based colloids, J. Chem. Phys., 111 (1999) 8588, doi: 10.1063/1.480200.
  31. D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal, V.K. Gupta, The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies, Colloid Interface Sci. Commun., 7 (2015) 16–19.
  32. A.A. Abdullah, N. Mu, A. Tansir, A. Mohammad, A. Ahmed, U. Hasan, K.S. Sudheesh, Removal of highly toxic Cd(II) metal ions from aqueous medium using magnetic nanocomposite: adsorption kinetics, isotherm and thermodynamics, Desal. Water Treat., 181 (2020) 355–361.
  33. Ö. Kerkez, Ş.S. Bayazit, Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions, J. Nanopart. Res., 16 (2014) 2431, doi: 10.1007/s11051-014-2431-1.
  34. H. Mansouri, R.J. Carmona, A. Gomis-Berenguer, S. Souissi- Najar, A. Ouederni, C.O. Ania, Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons, J. Colloid Interface Sci., 449 (2015) 252–260.
  35. E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43 (2009) 2419–2430.
  36. S.x. Zha, Y. Zhou, X. Jin, Z. Chen, The removal of amoxicillin from wastewater using organobentonite, J. Environ. Manage., 129 (2013) 569–576.
  37. S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, J.L. Figueiredo, Adsorption of ciprofloxacin on surfacemodified carbon materials, Water Res., 45 (2011) 4583–4591.
  38. N.A. Elessawy, M. Elnouby, M.H. Gouda, H.A. Hamad, N.A. Taha, M. Gouda, M.S. Mohy Eldin, Ciprofloxacin removal using magnetic fullerene nanocomposite obtained from sustainable PET bottle wastes: adsorption process optimization, kinetics, isotherm, regeneration and recycling studies, Chemosphere, 239 (2020) 6, doi: 10.1016/j.chemosphere.2019.124728.
  39. F. Yu, Y. Sun, M. Yang, J. Ma, Adsorption mechanism and effect of moisture contents on ciprofloxacin removal by threedimensional porous graphene hydrogel, J. Hazard. Mater., 374 (2019) 195–202.
  40. S. Budyanto, S. Soedjono, W. Irawaty, N. Indraswati, Studies of adsorption equilibria and kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite, J. Environ. Prot. Sci., 2 (2008) 72–80.
  41. D. Hu, L. Wang, Adsorption of amoxicillin onto quaternized cellulose from flax noil: kinetic, equilibrium and thermodynamic study, J. Taiwan Inst. Chem. Eng., 64 (2016) 227–234.
  42. S.A.C. Carabineiro, T. Thavorn-amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin, Catal. Today, 186 (2012) 29–34.
  43. Y. Hu, Y. Zhu, Y. Zhang, T. Lin, G. Zeng, S. Zhang, Y. Wang, W. He, M. Zhang, H. Long, An efficient adsorbent: simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption, Bioresour. Technol., 288 (2019) 2–3, doi: 10.1016/j.biortech.2019.121511.
  44. J. Kunjan, K. Shyam, J. Virendra, Adsorption study of F– ions onto ultrasonified electrochemically generated ultrafine particles, Desal. Water Treat., 173 (2020) 243–254.
  45. A.A. Mohammed, A.A. Najim, T.J. Al-Musawi, A.I. Alwared, Adsorptive performance of a mixture of three nonliving algae classes for nickel remediation in synthesized wastewater, J. Environ. Health Sci. Eng., 17 (2019) 529–538.
  46. H. Phuong-Thao, N. Ngoc-Tuan, V.H. Nguyen, N. Phuong- Tung, N.T. Duy, D. Van-Phuc, Modeling and optimization of biosorption of lead(II) ions from aqueous solution onto pine leaves (Pinus kesiya) using response surface methodology, Desal. Water Treat., 173 (2020) 383–393.
  47. T.M. Albayati, A.A. Sabri, D.B. Abed, Functionalized SBA-15 by amine group for removal of Ni(II) heavy metal ion in the batch adsorption system, Desal. Water Treat., 174 (2020) 301–310.
  48. S. Agarwal, I. Tyagi, V.K. Gupta, M.H. Dehghani, J. Jaafari, D. Balarak, M. Asif, Rapid removal of noxious nickel(II) using novel γ-alumina nanoparticles and multiwalled carbon nanotubes: kinetic and isotherm studies, J. Mol. Liq., 224 (2016) 618–623.