References

  1. R.O. Cristóvão, C.M. Botelho, R.J. Martins, J.M. Loureiro, R.A. Boaventura, Fish canning industry wastewater treatment for water reuse–a case study, J. Cleaner Prod., 87 (2015) 603–612.
  2. F.A. Fahim, D.H. Fleita, A.M. Ibrahim, F.M. El-Dars, Evaluation of some methods for fish canning wastewater treatment, Water Air Soil Pollut., 127 (2001) 205–226.
  3. R.O. Cristóvão, C.M. Botelho, R.J. Martins, J.M. Loureiro, R.A. Boaventura, Primary treatment optimization of a fish canning wastewater from a Portuguese plant, Water Resour. Ind., 6 (2014) 51–63.
  4. R. Cristovão, C. Botelho, R. Martins, R. Boaventura, Chemical and biological treatment of fish canning wastewaters, Int. J. Biosci. Biochem. Bioinf., 2 (2012) 237–242.
  5. N. Sunny, L. Mathai, Physicochemical Process for Fish Processing Wastewater, V.M. Monsalvo, Ed., Efficient Management of Wastewater from Manufacturing: New Treatment Technologies, Apple Academic Press, New York, NY, 2015, pp. 113–122.
  6. A. Nowak, R. Mazur, E. Panek, E. Dacewicz, K. Chmielowski, Treatment efficiency of fish processing wastewater in different types of biological reactors, Phys. Chem. Earth Parts A/B/C, 109 (2019) 40–48.
  7. P. Chowdhury, T. Viraraghavan, A. Srinivasan, Biological treatment processes for fish processing wastewater–a review, Bioresour. Technol., 101 (2010) 439–449.
  8. N. Kulik, M. Trapido, Y. Veressinina, R. Munter, Treatment of surfactant stabilized oil-in-water emulsions by means of chemical oxidation and coagulation, Environ. Technol., 28 (2007) 1345–1355.
  9. F. Hua, Y.F. Tsang, Y. Wang, S. Chan, H. Chua, S. Sin, Performance study of ceramic microfiltration membrane for oily wastewater treatment, Chem. Eng. J., 128 (2007) 169–175.
  10. M. Tir, N. Moulai-Mostefa, Optimization of oil removal from oily wastewater by electrocoagulation using response surface method, J. Hazard. Mater., 158 (2008) 107–115.
  11. T. Dai Lam, N. Van Chat, V.Q. Bach, V.D. Loi, N. Van Anh, Simultaneous degradation of 2,4,6-trinitrophenyl-Nmethylnitramine (Tetryl) and hexahydro-1, 3, 5-trinitro-1, 3, 5 triazine (RDX) in polluted wastewater using some advanced oxidation processes, J. Ind. Eng. Chem., 20 (2014) 1468–1475.
  12. R.O. Cristóvão, C. Gonçalves, C.M. Botelho, R.J. Martins, J.M. Loureiro, R.A. Boaventura, Fish canning wastewater treatment by activated sludge: application of factorial design optimization: biological treatment by activated sludge of fish canning wastewater, Water Resour. Ind., 10 (2015) 29–38.
  13. E.N. Hidayah, R.K.H. Putro, Combination of solid-liquid separation process to remove grease, oil and organic from food and dairy wastewater, Int. J. Chemtech Res., 11 (2018) 123–127.
  14. N.L. Nemerow, Industrial Waste Treatment: Contemporary Practice and Vision for the Future, 1st ed., Butterworth- Heinemann, 2010.
  15. K. Matsumiya, K. Nakanishi, Y. Matsumura, Destabilization of protein-based emulsions by diglycerol esters of fatty acids– the importance of chain length similarity between dispersed oil molecules and fatty acid residues of the emulsifier, Food Hydrocolloids, 25 (2011) 773–780.
  16. J. Gregory, J. Duan, Hydrolyzing metal salts as coagulants, Pure Appl. Chem., 73 (2001) 2017–2026.
  17. A. Pinotti, N. Zaritzky, Effect of aluminum sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes, Waste Manage., 21 (2001) 535–542.
  18. J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, IWA Publishing, London, 2016.
  19. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  20. G. Rıos, C. Pazos, J. Coca, Destabilization of cutting oil emulsions using inorganic salts as coagulants, Colloids Surf., A, 138 (1998) 383–389.
  21. C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent advancement of coagulation–flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res., 55 (2016) 4363–4389.
  22. O. Khalifa, F. Banat, C. Srinivasakannan, J. Radjenovic, S.W. Hasan, Performance tests and removal mechanisms of aerated electrocoagulation in the treatment of oily wastewater, J. Water Process. Eng., 36 (2020) 101290, doi: 10.1016/j. jwpe.2020.101290.
  23. T. Ahmad, C. Guria, A. Mandal, A review of oily wastewater treatment using ultrafiltration membrane: a parametric study to enhance the membrane performance, J. Water Process. Eng., 36 (2020) 101289, doi: 10.1016/j.jwpe.2020.101289.
  24. S.I. Abba, G. Elkiran, Effluent prediction of chemical oxygen demand from the astewater treatment plant using artificial neural network application, Procedia Comput. Sci., 120 (2017) 156–163.
  25. D. Dubber, N.F. Gray, Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste, J. Environ. Sci. Health., Part A, 45 (2010) 1595–1600.
  26. D. Mara, N.J. Horan, Handbook of Water and Wastewater Microbiology, 1st ed., Academic Press, 2003.
  27. A. Christensen, M.D. Gurol, T. Garoma, Treatment of persistent organic compounds by integrated advanced oxidation processes and sequential batch reactor, Water Res., 43 (2009) 3910–3921.
  28. A.Z. Gotvajn, J. Zagorc-Koncan, Combination of Fenton and biological oxidation for treatment of heavily polluted fermentation waste broth, Acta Chim. Slovenica, 52 (2005) 131–137.
  29. C. Amor, E. De Torres-Socías, J.A. Peres, M.I. Maldonado, I. Oller, S. Malato, M.S. Lucas, Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes, J. Hazard. Mater., 286 (2015) 261–268.
  30. A. Yazdanbakhsh, F. Mehdipour, A. Eslami, H.S. Maleksari, F. Ghanbari, The combination of coagulation, acid cracking and Fenton-like processes for olive oil mill wastewater treatment: phytotoxicity reduction and biodegradability augmentation, Water Sci. Technol., 71 (2015) 1097–1105.
  31. N. Jaafarzadeh, F. Ghanbari, M. Alvandi, Integration of coagulation and electro-activated HSO5 to treat pulp and paper wastewater, Sustainable Environ. Res., 27 (2017) 223–229.
  32. Z.-P. Xing, D.-Z. Sun, Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process, J. Hazard. Mater., 168 (2009) 1264–1268.
  33. E. Güneş, E. Demir, Y. Güneş, A. Hanedar, Characterization and treatment alternatives of industrial container and drum cleaning wastewater: comparison of Fenton-like process and combined coagulation/oxidation processes, Sep. Purif. Technol., 209 (2019) 426–433.
  34. V.G. de Barros, C.S. Rodrigues, W.A. Botello-Suárez, R.M. Duda, R.A. de Oliveira, E.S. da Silva, J.L. Faria, R.A. Boaventura, L.M. Madeira, Treatment of biodigested coffee processing wastewater using Fenton’s oxidation and coagulation/flocculation, Environ. Pollut., 259 (2020) 113796, doi: 10.1016/j.envpol.2019. 113796.
  35. R.O. Cristóvão, C. Gonçalves, C.M. Botelho, R.J. Martins, R.A. Boaventura, Chemical oxidation of fish canning wastewater by Fenton’s reagent, J. Environ. Chem. Eng., 2 (2014) 2372–2376.
  36. P. Tanvanit, J. Anotai, C.-C. Su, M.-C. Lu, Treatment of explosivecontaminated wastewater through the Fenton process, Desal. Water Treat., 51 (2013) 2820–2825.
  37. J. Anotai, P. Tanvanit, S. Garcia-Segura, M.-C. Lu, Electro-assisted Fenton treatment of ammunition wastewater containing nitramine explosives, Process Saf. Environ. Prot., 109 (2017) 429–436.
  38. N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng., 4 (2016) 762–787.
  39. X. Liu, Y. Sang, H. Yin, A. Lin, Z. Guo, Z. Liu, Progress in the mechanism and kinetics of Fenton reaction, MOJ Ecol. Environ. Sci., 3 (2018) 10–15.
  40. T.-H. Kim, C. Park, J. Yang, S. Kim, Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, J. Hazard. Mater., 112 (2004) 95–103.
  41. C. Minero, M. Lucchiari, D. Vione, V. Maurino, Fe(III)-enhanced sonochemical degradation of methylene blue in aqueous solution, Environ. Sci. Technol., 39 (2005) 8936–8942.
  42. S. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm., 76 (2008) 714–720.
  43. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2012.
  44. W.E. Federation, APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2005.
  45. F. Kanaani, B. Tavakoli, A.R. Pendashteh, N. Chaibakhsh, F. Ostovar, Coagulation/Fenton oxidation combined treatment of compost leachate using quince seed mucilage as an effective biocoagulant, Environ. Technol., 40 (2019) 1–10, doi: 10.1080/ 09593330.2019.1635653.
  46. M. Gholami, B.A. Souraki, A. Pendashteh, S.P. Mozhdehi, M.B. Marzouni, Treatment of pulp and paper wastewater by lab-scale coagulation/SR-AOPs/ultrafiltration process: optimization by Taguchi, Desal. Water. Treat., 95 (2017) 96–108.
  47. A. Aygun, T. Yilmaz, Improvement of coagulation-flocculation process for treatment of detergent wastewaters using coagulant aids, J. Environ. Chem. Eng., 1 (2010) 97–101.
  48. S. Jangkorn, S. Kuhakaew, S. Theantanoo, H. Klinla-Or, T. Sriwiriyarat, Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants, Int. J. Environ. Sci., 23 (2011) 587–594.
  49. N. Boughou, I. Majdy, E. Cherkaoui, M. Khamar, A. Nounah, Effect of pH and time on the treatment by coagulation from slaughterhouse of the city of Rabat, MATEC Web Conf., 149 (2018) 02091, doi: 10.1051/matecconf/201814902091.
  50. Z.L. Yang, B.Y. Gao, Q.Y. Yue, Y. Wang, Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid– kaolin synthetic water, J. Hazard. Mater., 178 (2010) 596–603.
  51. P. Zhang, Z. Wu, G. Zhang, G. Zeng, H. Zhang, J. Li, X. Song, J. Dong, Coagulation characteristics of polyaluminum chlorides PAC-Al30 on humic acid removal from water, Sep. Purif. Technol., 63 (2008) 642–647.
  52. L.M. Nieto, G. Hodaifa, S. Rodríguez, J.A. Giménez, J. Ochando, Degradation of organic matter in olive-oil mill wastewater through homogeneous Fenton-like reaction, Chem. Eng. J., 173 (2011) 503– 510.
  53. H. Gallard, J.D. Laat, Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound, Water Res., 34 (2000) 3107–3116.
  54. M.L. Kremer, The Fenton reaction dependence of the rate on pH, J. Phys. Chem. A, 107 (2003) 1734–1741.
  55. Y.S. Jung, W.T. Lim, J.Y. Park, Y.H. Kim, Effect of pH on Fenton and Fenton‐like oxidation, Environ. Technol., 30 (2009) 183–190.
  56. G. Hodaifa, J. Ochando-Pulido, S. Rodriguez-Vives, A. Martinez-Ferez, Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process, Chem. Eng. J., 220 (2013) 117–124.
  57. K. Taghavi, A. Pendashteh, S.P. Mozhdehi, Combined Fentonlike oxidation and aerobic MBBR biological processes for treatment of the wastewater of detergent industries, Desal. Water. Treat., 77 (2017) 206–214.
  58. S.K. Golfinopoulos, A.D. Nikolaou, Survey of disinfection by-products in drinking water in Athens, Greece, Desalination, 176 (2005) 13–24.
  59. C. Sidney Santana, N. Ramos, M. Daniel, C.C. Vieira Velloso, A. Aguiar, Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid, Int. J. Environ. Res. Public Health, 16 (2019) 1602, doi: 10.3390/ ijerph16091602.
  60. D.C. Hakika, S. Sarto, A. Mindaryani, M. Hidayat, Decreasing COD in Sugarcane vinasse using the Fenton reaction: the effect of processing parameters, Catalysts, 9 (2019) 881, doi:10.3390/catal9110881.
  61. Q. Zhang, C. Wang, Y. Lei, Fenton’s oxidation kinetics, pathway, and toxicity evaluation of diethyl phthalate in aqueous solution, J. Adv. Oxid. Technol., 19 (2016) 125–133.
  62. Y. Chen, Y. Cheng, X. Guan, Y. Liu, J. Nie, C. Li, A rapid Fenton treatment of bio-treated dyeing and finishing wastewater at second-scale intervals: kinetics by stopped-flow technique and application in a full-scale plant, Sci. Rep., 9 (2019) 1–11.
  63. N. Ertugay, F.N. Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study, Arabian J. Chem., 10 (2017) S1158–S1163.
  64. B. Palas, G. Ersöz, S. Atalay, Green catalysts for Fenton-like oxidation of Procion Red MX-5B: influence of the activation method and the reaction parameters on dye removal, Sep. Sci. Technol., 52 (2017) 404–420.