References

  1. S. Gao, J.D. Liang, T.T. Teng, M. Zhang, Petroleum contamination evaluation and bacterial community distribution in a historic oilfield located in loess plateau in China, Appl. Soil Ecol., 136 (2019) 30–42.
  2. C.C. Liu, X.H. Chen, E.E. Mack, S. Wang, W.C. Du, Y. Yin, S.A. Banwart, H.Y. Guo, Evaluating a novel permeable reactive bio-barrier to remediate PAH-contaminated groundwater, J. Hazard. Mater., 368 (2019) 444–451.
  3. K. Tong, Z. Zhang, A.G. Lin, Q.H. Song, G.D. Ji, D. Wang, A.D. Zhang, Treatment of super heavy oil wastewater by a combined process of lignite-activated coke adsorption and immobilized biological filter degradation: performance and the relevant microbial community analysis, J. Chem. Technol. Biotechnol., 93 (2018) 2942–2951.
  4. X.W. Zhang, Y.Y. Qu, S.N. You, Q. Ma, H. Zhou, L.Z. Zhang, L.H. Zhang, J.W. Jing, L.F. Liu, Bioremediation of nitrogencontaining organic pollutants using phenol-stimulated activated sludge: performance and microbial community analysis, J. Chem. Technol. Biotechnol., 93 (2018) 3199–3207.
  5. J.R. Thelusmond, T.J. Strathmann, A.M. Cupples, Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils, Sci. Total Environ., 657 (2019) 1138–1149.
  6. K. Wu, T.H. Lee, Y.L. Chen, Y.S. Wang, P.H. Wang, C.P. Yu, K.H. Chu, Y.R. Chiang, Metabolites involved in aerobic degradation of the A and B rings of estrogen, Appl. Environ. Microbiol., 85 (2019) e02223-18.
  7. F. Eskandari, B. Shahnavaz, M. Mashreghi, Optimization of complete RB-5 azo dye decolorization using novel cold-adapted and mesophilic bacterial consortia, J. Environ. Manage., 241 (2019) 91–98.
  8. P. Zeng, B.Y.P. Moy, Y.H. Song, J.H. Tay, Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic acid-degrading aerobic granules, Appl. Microbiol. Biotechnol., 80 (2008) 899–905.
  9. X.Q. Tao, G.N. Lu, Z. Dang, C. Yang, X.Y. Yi, A phenanthrenedegrading strain Sphingomonas sp. GY2B isolated from contaminated soils, Process Biochem., 42 (2007) 401–408.
  10. D.H. Pieper, W. Reineke, Engineering bacteria for bioremediation, Curr. Opin. Biotechnol., 11 (2000) 262–270.
  11. M. Megharaj, B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, R. Naidu, Bioremediation approaches for organic pollutants: a critical perspective, Environ. Int., 37 (2011) 1362–1375.
  12. J. Srivastava, R. Naraian, S.J.S. Kalra, H. Chandra, Advances in microbial bioremediation and the factors influencing the process, Int. J. Environ. Sci. Technol., 11 (2014) 1787–1800.
  13. C. Levard, S. Mitra, T. Yang, A.D. Jew, A.R. Badireddy, G.V. Lowry, G.E. Brown, Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli, Environ. Sci. Technol., 47 (2013) 5738–5745.
  14. A. Kunzmann, B. Andersson, T. Thurnherr, H. Krug, A. Scheynius, B. Fadeel, Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation, Biochim. Biophys. Acta Gen. Subj., 1810 (2011) 361–373.
  15. D. Ding, Y.L. Zhang, E.A. Sykes, L. Chen, Z. Chen, W.H. Tan, The influence of physiological environment on the targeting effect of aptamer-guided gold nanoparticles, Nano Res., 12 (2019) 129–135.
  16. X.M. Jiang, X.W. Zhang, P. Gray, J.W. Zheng, T.R. Croley, P.P. Fu, J.J. Yin, Influences of simulated gastrointestinal environment on physicochemical properties of gold nanoparticles and their implications on intestinal epithelial permeability, J. Environ. Sci. Health., Part C, 37 (2019) 116–131.
  17. Z. Guo, K.P. Cui, G.M. Zeng, J.J. Wang, X.P. Guo, Silver nanomaterials in the natural environment: an overview of their biosynthesis and kinetic behavior, Sci. Total Environ., 643 (2018) 1325–1336.
  18. W. Chen, H.C. Liu, Adsorption of sulfate in aqueous solutions by organo-nano-clay: adsorption equilibrium and kinetic studies, J. Cent. South Univ., 21 (2014) 1974–1981.
  19. Z.Y. Zeng, X.Z. Li, S. Zhang, D. Huang, Characterization of nano bamboo charcoal drug delivery system for Eucommia ulmoides extract and its anticancer effect in vitro, Pharmacogn. Mag., 13 (2017) 498–503.
  20. Y.L. Zhou, Z.B. Hu, M.X. Tong, Q.L. Zhang, C.Q. Tong, Preparation and photocatalytic performance of bamboocharcoal- supported nano-ZnO composites, Mater. Sci., 24 (2018) 49–52.
  21. S.A. Johari, K. Rasmussen, M. Gulumian, M. Ghazi-Khansari, N. Tetarazako, S. Kashiwada, S. Asghari, J.W. Park, I.J. Yu, Introducing a new standardized nanomaterial environmental toxicity screening testing procedure, ISO/TS 20787: aquatic toxicity assessment of manufactured nanomaterials in saltwater Lakes using Artemia sp. nauplii, Toxicol. Mech. Methods, 29 (2019) 95–109.
  22. M.L. Fernandez-Cruz, D. Hernandez-Moreno, J. Catalan, R.K. Cross, H. Stockmann-Juvala, J. Cabellos, V.R. Lopes, M. Matzke, N. Ferraz, J.J. Izquierdo, J.M. Navas, M. Park, C. Svendsen, G. Janer, Quality evaluation of human and environmental toxicity studies performed with nanomaterials - the GUIDEnano approach, Environ. Sci. Nano, 5 (2018) 381–397.
  23. P.C. Ray, H.T. Yu, P.P. Fu, Toxicity and environmental risks of nanomaterials: challenges and future needs, J. Environ. Sci. Health., Part C, 27 (2009) 1–35.
  24. S.Y. Li, H.Y. Wang, C.C. Chen, X.Y. Li, Q.Y. Deng, M. Gong, D.G. Li, Size effect of charcoal particles on the properties of bamboo charcoal/ultra-high molecular weight polyethylene composites, J. Appl. Polym. Sci., 134 (2017) 45530, doi: 10.1002/ app.45530.
  25. P.C. Hsiao, C.M. Lin, C.T. Lu, W. Yin, Y.T. Huang, J.H. Lin, Manufacture and evaluations of stainless steel/rayon/bamboo charcoal functional composite knits, Text. Res. J., 89 (2019) 3893–3899.
  26. S.L. Zhu, Y. Guo, Y.X. Chen, N. Su, K.T. Zhang, S.Q. Liu, Effects of the incorporation of nano-bamboo charcoal on the mechanical properties and thermal behavior of bamboo-plastic composites, Bioresources, 11 (2016) 2684–2697.
  27. C.M. Tang, Y.H. Tian, S.H. Hsu, Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization, Materials, 8 (2015) 4895–4911.
  28. Y.H. Liu, D.L. Zhong, D.Y. Shen, R.H. Mo, F.B. Tang, Determination of four insecticides in bamboo shoot by QuEChERSMSPD combined with LC-MS/MS, Food Sci. Technol. Res., 20 (2014) 563–569.
  29. S.H. Othman, S.A. Rashid, T.I.M. Ghazi, N. Abdullah, Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications, J. Nanomater., 2012 (2012) 718214, doi: 10.1155/2012/718214.
  30. M.A. Kiser, H. Ryu, H.Y. Jang, K. Hristovski, P. Westerhoff, Biosorption of nanoparticles to heterotrophic wastewater biomass, Water Res., 44 (2010) 4105–4114.
  31. N. Dissanayake, K. Current, S. Obare, Influence of environmental factors on the mutagenic effects of iron oxide nanoparticles, Abstr. Pap. Am. Chem., 252 (2016) 23482–23516.
  32. R. Khan, M.A. Inam, S.Z. Zam, D.R. Park, I.T. Yeom, Assessment of key environmental factors influencing the sedimentation and aggregation behavior of zinc oxide nanoparticles in aquatic environment, Water, 10 (2018) 660, doi: 10.3390/w10050660.
  33. M.K. Li, Z.G. He, Y.T. Hu, L. Hu, H. Zhong, Both cell envelope and cytoplasm were the locations for chromium(VI) reduction by Bacillus sp. M6, Bioresour. Technol., 273 (2019) 130–135.
  34. S.S. Liu, C.L. Guo, W.J. Lin, F.J. Wu, G.N. Lu, J. Lu, Z. Dang, Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B, Sci. Total Environ., 609 (2017) 1161–1171.
  35. X.Q. Tao, G.N. Lu, J.P. Liu, T. Li, L.N. Yang, Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads, Int. J. Environ Res. Public Health, 6 (2009) 2470–2480.
  36. Y. Zhang, Y.S. Chen, P. Westerhoff, J. Crittenden, Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, Water Res., 43 (2009) 4249–4257.
  37. R.G. Nikov, A.S. Nikolov, N.N. Nedyalkov, I.G. Dimitrov, P.A. Atanasov, M.T. Alexandrov, Stability of contaminationfree gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water, Appl. Surf. Sci., 258 (2012) 9318–9322.
  38. D.X. Zhou, A.A. Keller, Role of morphology in the aggregation kinetics of ZnO nanoparticles, Water Res., 44 (2010) 2948–2956.
  39. J. Qi, Y.Y. Ye, J.J. Wu, H.T. Wang, F.T. Li, Dispersion and stability of titanium dioxide nanoparticles in aqueous suspension: effects of ultrasonication and concentration, Water Sci. Technol., 67 (2013) 147–151.
  40. E. Herzog, H.J. Byrne, M. Davoren, A. Casey, A. Duschl, G.J. Oostingh, Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples, Toxicol. Appl. Pharmacol., 236 (2009) 276–281.
  41. W.Y. Li, X.Y. Zhu, Y. He, B.S. Xing, J.M. Xu, P.C. Brookes, Enhancement of water solubility and mobility of phenanthrene by natural soil nanoparticles, Environ. Pollut., 176 (2013) 228–233.