References
- S. Gao, J.D. Liang, T.T. Teng, M. Zhang, Petroleum contamination
evaluation and bacterial community distribution in a historic
oilfield located in loess plateau in China, Appl. Soil Ecol.,
136 (2019) 30–42.
- C.C. Liu, X.H. Chen, E.E. Mack, S. Wang, W.C. Du, Y. Yin,
S.A. Banwart, H.Y. Guo, Evaluating a novel permeable reactive
bio-barrier to remediate PAH-contaminated groundwater,
J. Hazard. Mater., 368 (2019) 444–451.
- K. Tong, Z. Zhang, A.G. Lin, Q.H. Song, G.D. Ji, D. Wang,
A.D. Zhang, Treatment of super heavy oil wastewater by a
combined process of lignite-activated coke adsorption and
immobilized biological filter degradation: performance and
the relevant microbial community analysis, J. Chem. Technol.
Biotechnol., 93 (2018) 2942–2951.
- X.W. Zhang, Y.Y. Qu, S.N. You, Q. Ma, H. Zhou, L.Z. Zhang,
L.H. Zhang, J.W. Jing, L.F. Liu, Bioremediation of nitrogencontaining
organic pollutants using phenol-stimulated activated
sludge: performance and microbial community analysis,
J. Chem. Technol. Biotechnol., 93 (2018) 3199–3207.
- J.R. Thelusmond, T.J. Strathmann, A.M. Cupples, Carbamazepine,
triclocarban and triclosan biodegradation and the
phylotypes and functional genes associated with xenobiotic
degradation in four agricultural soils, Sci. Total Environ.,
657 (2019) 1138–1149.
- K. Wu, T.H. Lee, Y.L. Chen, Y.S. Wang, P.H. Wang, C.P. Yu,
K.H. Chu, Y.R. Chiang, Metabolites involved in aerobic
degradation of the A and B rings of estrogen, Appl. Environ.
Microbiol., 85 (2019) e02223-18.
- F. Eskandari, B. Shahnavaz, M. Mashreghi, Optimization of
complete RB-5 azo dye decolorization using novel cold-adapted
and mesophilic bacterial consortia, J. Environ. Manage.,
241 (2019) 91–98.
- P. Zeng, B.Y.P. Moy, Y.H. Song, J.H. Tay, Biodegradation of
dimethyl phthalate by Sphingomonas sp. isolated from phthalic acid-degrading aerobic granules, Appl. Microbiol. Biotechnol.,
80 (2008) 899–905.
- X.Q. Tao, G.N. Lu, Z. Dang, C. Yang, X.Y. Yi, A phenanthrenedegrading
strain Sphingomonas sp. GY2B isolated from
contaminated soils, Process Biochem., 42 (2007) 401–408.
- D.H. Pieper, W. Reineke, Engineering bacteria for bioremediation,
Curr. Opin. Biotechnol., 11 (2000) 262–270.
- M. Megharaj, B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan,
R. Naidu, Bioremediation approaches for organic
pollutants: a critical perspective, Environ. Int., 37 (2011)
1362–1375.
- J. Srivastava, R. Naraian, S.J.S. Kalra, H. Chandra, Advances
in microbial bioremediation and the factors influencing the
process, Int. J. Environ. Sci. Technol., 11 (2014) 1787–1800.
- C. Levard, S. Mitra, T. Yang, A.D. Jew, A.R. Badireddy,
G.V. Lowry, G.E. Brown, Effect of chloride on the dissolution
rate of silver nanoparticles and toxicity to E. coli, Environ. Sci.
Technol., 47 (2013) 5738–5745.
- A. Kunzmann, B. Andersson, T. Thurnherr, H. Krug,
A. Scheynius, B. Fadeel, Toxicology of engineered nanomaterials:
focus on biocompatibility, biodistribution and
biodegradation, Biochim. Biophys. Acta Gen. Subj., 1810 (2011)
361–373.
- D. Ding, Y.L. Zhang, E.A. Sykes, L. Chen, Z. Chen, W.H. Tan,
The influence of physiological environment on the targeting
effect of aptamer-guided gold nanoparticles, Nano Res.,
12 (2019) 129–135.
- X.M. Jiang, X.W. Zhang, P. Gray, J.W. Zheng, T.R. Croley,
P.P. Fu, J.J. Yin, Influences of simulated gastrointestinal environment
on physicochemical properties of gold nanoparticles
and their implications on intestinal epithelial permeability,
J. Environ. Sci. Health., Part C, 37 (2019) 116–131.
- Z. Guo, K.P. Cui, G.M. Zeng, J.J. Wang, X.P. Guo, Silver
nanomaterials in the natural environment: an overview of
their biosynthesis and kinetic behavior, Sci. Total Environ.,
643 (2018) 1325–1336.
- W. Chen, H.C. Liu, Adsorption of sulfate in aqueous solutions
by organo-nano-clay: adsorption equilibrium and kinetic
studies, J. Cent. South Univ., 21 (2014) 1974–1981.
- Z.Y. Zeng, X.Z. Li, S. Zhang, D. Huang, Characterization of
nano bamboo charcoal drug delivery system for Eucommia
ulmoides extract and its anticancer effect in vitro, Pharmacogn.
Mag., 13 (2017) 498–503.
- Y.L. Zhou, Z.B. Hu, M.X. Tong, Q.L. Zhang, C.Q. Tong,
Preparation and photocatalytic performance of bamboocharcoal-
supported nano-ZnO composites, Mater. Sci., 24 (2018)
49–52.
- S.A. Johari, K. Rasmussen, M. Gulumian, M. Ghazi-Khansari,
N. Tetarazako, S. Kashiwada, S. Asghari, J.W. Park, I.J. Yu,
Introducing a new standardized nanomaterial environmental
toxicity screening testing procedure, ISO/TS 20787: aquatic
toxicity assessment of manufactured nanomaterials in saltwater
Lakes using Artemia sp. nauplii, Toxicol. Mech. Methods,
29 (2019) 95–109.
- M.L. Fernandez-Cruz, D. Hernandez-Moreno, J. Catalan,
R.K. Cross, H. Stockmann-Juvala, J. Cabellos, V.R. Lopes,
M. Matzke, N. Ferraz, J.J. Izquierdo, J.M. Navas, M. Park,
C. Svendsen, G. Janer, Quality evaluation of human and
environmental toxicity studies performed with nanomaterials -
the GUIDEnano approach, Environ. Sci. Nano, 5 (2018) 381–397.
- P.C. Ray, H.T. Yu, P.P. Fu, Toxicity and environmental risks
of nanomaterials: challenges and future needs, J. Environ. Sci.
Health., Part C, 27 (2009) 1–35.
- S.Y. Li, H.Y. Wang, C.C. Chen, X.Y. Li, Q.Y. Deng, M. Gong,
D.G. Li, Size effect of charcoal particles on the properties of
bamboo charcoal/ultra-high molecular weight polyethylene
composites, J. Appl. Polym. Sci., 134 (2017) 45530, doi: 10.1002/
app.45530.
- P.C. Hsiao, C.M. Lin, C.T. Lu, W. Yin, Y.T. Huang, J.H. Lin,
Manufacture and evaluations of stainless steel/rayon/bamboo
charcoal functional composite knits, Text. Res. J., 89 (2019)
3893–3899.
- S.L. Zhu, Y. Guo, Y.X. Chen, N. Su, K.T. Zhang, S.Q. Liu,
Effects of the incorporation of nano-bamboo charcoal on the
mechanical properties and thermal behavior of bamboo-plastic
composites, Bioresources, 11 (2016) 2684–2697.
- C.M. Tang, Y.H. Tian, S.H. Hsu, Poly(vinyl alcohol)
nanocomposites reinforced with bamboo charcoal
nanoparticles: mineralization behavior and characterization,
Materials, 8 (2015) 4895–4911.
- Y.H. Liu, D.L. Zhong, D.Y. Shen, R.H. Mo, F.B. Tang, Determination
of four insecticides in bamboo shoot by QuEChERSMSPD
combined with LC-MS/MS, Food Sci. Technol. Res.,
20 (2014) 563–569.
- S.H. Othman, S.A. Rashid, T.I.M. Ghazi, N. Abdullah, Dispersion
and stabilization of photocatalytic TiO2 nanoparticles in
aqueous suspension for coatings applications, J. Nanomater.,
2012 (2012) 718214, doi: 10.1155/2012/718214.
- M.A. Kiser, H. Ryu, H.Y. Jang, K. Hristovski, P. Westerhoff,
Biosorption of nanoparticles to heterotrophic wastewater
biomass, Water Res., 44 (2010) 4105–4114.
- N. Dissanayake, K. Current, S. Obare, Influence of environmental
factors on the mutagenic effects of iron oxide nanoparticles,
Abstr. Pap. Am. Chem., 252 (2016) 23482–23516.
- R. Khan, M.A. Inam, S.Z. Zam, D.R. Park, I.T. Yeom, Assessment
of key environmental factors influencing the sedimentation and
aggregation behavior of zinc oxide nanoparticles in aquatic
environment, Water, 10 (2018) 660, doi: 10.3390/w10050660.
- M.K. Li, Z.G. He, Y.T. Hu, L. Hu, H. Zhong, Both cell envelope
and cytoplasm were the locations for chromium(VI) reduction
by Bacillus sp. M6, Bioresour. Technol., 273 (2019) 130–135.
- S.S. Liu, C.L. Guo, W.J. Lin, F.J. Wu, G.N. Lu, J. Lu, Z. Dang,
Comparative transcriptomic evidence for Tween80-enhanced
biodegradation of phenanthrene by Sphingomonas sp. GY2B,
Sci. Total Environ., 609 (2017) 1161–1171.
- X.Q. Tao, G.N. Lu, J.P. Liu, T. Li, L.N. Yang, Rapid degradation
of phenanthrene by using Sphingomonas sp. GY2B immobilized
in calcium alginate gel beads, Int. J. Environ Res. Public Health,
6 (2009) 2470–2480.
- Y. Zhang, Y.S. Chen, P. Westerhoff, J. Crittenden, Impact of
natural organic matter and divalent cations on the stability of
aqueous nanoparticles, Water Res., 43 (2009) 4249–4257.
- R.G. Nikov, A.S. Nikolov, N.N. Nedyalkov, I.G. Dimitrov,
P.A. Atanasov, M.T. Alexandrov, Stability of contaminationfree
gold and silver nanoparticles produced by nanosecond
laser ablation of solid targets in water, Appl. Surf. Sci.,
258 (2012) 9318–9322.
- D.X. Zhou, A.A. Keller, Role of morphology in the aggregation
kinetics of ZnO nanoparticles, Water Res., 44 (2010) 2948–2956.
- J. Qi, Y.Y. Ye, J.J. Wu, H.T. Wang, F.T. Li, Dispersion and stability
of titanium dioxide nanoparticles in aqueous suspension:
effects of ultrasonication and concentration, Water Sci. Technol.,
67 (2013) 147–151.
- E. Herzog, H.J. Byrne, M. Davoren, A. Casey, A. Duschl,
G.J. Oostingh, Dispersion medium modulates oxidative stress
response of human lung epithelial cells upon exposure to
carbon nanomaterial samples, Toxicol. Appl. Pharmacol.,
236 (2009) 276–281.
- W.Y. Li, X.Y. Zhu, Y. He, B.S. Xing, J.M. Xu, P.C. Brookes,
Enhancement of water solubility and mobility of phenanthrene
by natural soil nanoparticles, Environ. Pollut., 176 (2013)
228–233.