References
- V.K. Gupta, M. Gupta, S. Sharma, Process development for the
removal of lead and chromium from aqueous solutions using
red mud–an aluminium industry waste, Water Res., 35 (2001)
1125–1134.
- A. Ali, K. Saeed, F. Mabood, Removal of chromium(VI) from
aqueous medium using chemically modified banana peels as
efficient low-cost adsorbent, Alex. Eng. J., 66 (2016) 2933–2942.
- A. Alemu, B. Lemma, N. Gabbiye, M. Tadele, M. Teferi, Removal
of chromium(VI) from aqueous solution using vesicular basalt:
a potential low cost wastewater treatment system, Heliyon,
4 (2018) e00712, doi: 10.1016/j.heliyon.2018.e00682.
- F.C. Richard, A.C. Bourg, Aqueous geochemistry of chromium:
a review, Water Res., 25 (1991) 807–816.
- G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar,
M.R. Khan, S. Kalia, Shweta, M. Bala, A. Sharma, Fabrication
and characterization of chitosan-crosslinked-poly(alginic acid)
nanohydrogel for adsorptive removal of Cr(VI) metal ion from
aqueous medium, Int. J. Biol. Macromol., 95 (2017) 484–493.
- C.E. Barrera-Diaz, V. Lugo-Lugo, B. Bilyeu, A review of
chemical, electrochemical and biological methods for aqueous
Cr(VI) reduction, J. Hazard. Mater., 223 (2012) 1–12.
- P.M. Jardine, S.E. Fendorf, M.A. Mayes, I.L. Larsen, S.C. Brooks,
W.B. Bailey, Fate and transport of hexavalent chromium
in undisturbed heterogeneous soil, Environ. Sci. Technol.,
33 (1999) 2939–2944.
- S.S. Poguberović, D.M. Krčmar, S.P. Maletić, Z. Kónya,
D.D.T. Pilipović, D.V. Kerkez, S.D. Rončević, Removal of As(III)
and Cr(VI) from aqueous solutions using “green” zero-valent
iron nanoparticles produced by oak, mulberry and cherry
leaf extracts, Ecol. Eng., 90 (2016) 42–49.
- M. Pepi, F. Baldi, Modulation of chromium(VI) toxicity by
organic and inorganic sulfur species in yeasts from industrial
wastes, Biometals, 5 (1992) 179–185.
- M. Gheju, Hexavalent chromium reduction with zero-valent
iron (ZVI) in aquatic systems, Water Air Soil Pollut., 222 (2011)
103–148.
- J. Němeček, P. Pokorný, O. Lhotský, V. Knytl, P. Najmanová,
J. Steinová, M. Černík, A. Filipová, J. Filip, T. Cajthaml,
Combined nano-biotechnology for in-situ remediation of
mixed contamination of groundwater by hexavalent chromium
and chlorinated solvents, Sci. Total Environ., 563–564 (2016)
822–834.
- A. Kumar, G. Sharma, G. Chengsheng, M. Naushad,
D. Pathania, P. Dhiman, S. Kalia, Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven
photoreduction of carcinogenic Cr(VI) and dechlorination and
mineralization of 4-chlorophenol from simulated waste water,
RSC Adv., 6 (2016) 13251–13263.
- A.G. Williams, M.M. Scherer, Kinetics of Cr(VI) reduction by
carbonate green rust, Environ. Sci. Technol., 35 (2001) 3488–3494.
- A.K. Shanker, C. Cervantes, H. Loza-Tavera, S. Avudainayagam,
Chromium toxicity in plants, Environ. Int., 31 (2005) 739–753.
- Y. Hojo, Y. Satomi, In vivo nephrotoxicity induced in mice by
chromium(VI), Biol. Trace Elem. Res., 31 (1991) 21–31.
- K.H. Cheung, J.D. Gu, Mechanism of hexavalent chromium
detoxification by microorganisms and bioremediation
application potential: a review, Int. Biodeterior. Biodegrad.,
59 (2007) 8–15.
- Z.A. Al-Othman, R. Ali, M. Naushad, Hexavalent chromium
removal from aqueous medium by activated carbon prepared
from peanut shell: adsorption kinetics, equilibrium and
thermodynamic studies, Chem. Eng. J., 184 (2012) 238–247.
- O.N. Kononova, G.L. Bryuzgina, O.V. Apchitaeva, Y.S. Kononov,
Ion exchange recovery of chromium(VI) and manganese(II)
from aqueous solutions, Arabian J. Chem., 12 (2019) 2713–2720.
- G.S. Fomin, Water: A Control of Chemical, Bacterial and
Radiation Safety according to International Standards, Protector,
Moscow, 2010.
- C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba,
M. Naushad, Efficient techniques for the removal of toxic heavy
metals from aquatic environment: a review, J. Environ. Chem.
Eng., 5 (2017) 2782–2799.
- D. Park, Y.S. Yum, J.Y. Kim, J.M. Park, How to study Cr(VI)
biosorption: use of fermentation waste for detoxifying Cr(VI)
in aqueous solution, Chem. Eng. J., 136 (2008) 173–179.
- D. Petruzzelli, R. Passino, G. Tiravanti, Ion exchange process
for chromium removal and recovery from tannery wastes,
Ind. Eng. Chem. Res., 34 (1995) 2612–2617.
- S. Rengaraj, K.H. Yeon, S.H. Moon, Removal of chromium from
water and wastewater by ion exchange resins, J. Hazard. Mater.,
87 (2001) 273–287.
- P. Gao, P. Chen, F. Shen, G. Chen, Removal of chromium(VI) from
wastewater by combined electrocoagulation-electrofloatation
without a filter, Sep. Purif. Technol., 43 (2005) 117–123.
- C.A. Kozlowski, W. Walkowiak, Removal of chromium(VI)
from aqueous solutions by polymer inclusion membranes,
Water Res., 36 (2002) 4870–4876.
- L. Ge, B. Wu, Q. Li, Y. Wang, D. Yu, L. Wu, J. Pan, J. Miao,
T. Xu, Electrodialysis with nanofiltration membrane (EDNF)
for high-efficiency cations fractionation, J. Membr. Sci.,
498 (2016) 192–200.
- H. Moloukhia, W.S. Hegazy, E.A. Abdel-Galil, S.S. Mahrous,
Removal of Eu3+, Ce3+, Sr2+, and Cs+ ions from radioactive waste
solutions by modified activated carbon prepared from coconut
shells, Chem. Ecol., 32 (2016) 324–345.
- E.A. Abdel-Galil, H.E. Rizk, W.M. El-kenany, Low cost natural
adsorbent for removal of Pb(II) ions from waste solutions,
Arabian J. Nucl. Sci. Appl., 51 (2018) 19–30.
- M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami,
S.M. Alshehri, Nickel ferrite bearing nitrogen-doped
mesoporous carbon as efficient adsorbent for the removal of
highly toxic metal ion from aqueous medium, Chem. Eng. J.,
330 (2017) 1351–1360.
- J. Kyziol-Komosinska, C. Rosik-Dulewska, A. Dzieniszewska,
M. PajaÎk, I. Krzyzewska, Removal of Cr(III) ions from water
and wastewater by sorption onto peats and clays occurring
in an overburden of lignite beds in Central Poland, Environ.
Prot. Eng., 40 (2014) 5–22.
- A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, N. Tase, Evaluating
the adsorptive capacity of montmorillonitic and calcareous
clays on the removal of several heavy metals in aqueous
systems, Chem. Eng. J., 172 (2011) 37–46.
- M. Kobya, Adsorption kinetic and equilibrium studies of Cr(VI)
by hazelnut shell activated carbon, Adsorpt. Sci. Technol.,
22 (2004) 51–64.
- K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika,
N. Vennilamani, S. Pattabhi, Utilization of various agricultural
wastes for activated carbon preparation and application for
the removal of dyes and metal ions from aqueous solution,
Bioresour. Technol., 87 (2003) 129–132.
- G. Moussavi, B. Barikbin, Biosorption of chromium(VI) from
industrial wastewater on to pistachio hull waste biomass,
Chem. Eng. J., 162 (2010) 893–900.
- K. Wang, G. Qiu, H. Cao, R. Jin, Removal of chromium(VI) from
aqueous solutions using Fe3O4 magnetic polymer microspheres
functionalized with amino groups, Materials, 8 (2015) 8378–8391.
- E. Alemayehu, S.T. Bruhnb, B. Lennartza, Adsorption behaviour
of Cr(VI) onto macro and micro-vesicular volcanic rocks from
water, Sep. Purif. Technol., 78 (2011) 55–61.
- M.R. Moghadam, N. Nasirizadeh, Z. Dashti, E. Babanezhad,
Removal of Fe(II) from aqueous solution using pomegranate
peel carbon: equilibrium and kinetic studies, Int. J. Ind. Chem.,
4 (2013) 4–19.
- A.E. Nemr, Potential of pomegranate husk carbon for Cr(VI)
removal from wastewater: kinetic and isotherm studies,
J. Hazard. Mater., 161 (2009) 132–141.
- M. Alam, R. Nadeem, M.I. Jilani, Pb(II) removal from wastewater
using pomegranate waste biomass, Int. J. Chem. Biochem.
Sci., 1 (2012) 24–29.
- M. Ghaedi, H. Tavallali, M. Sharifi, S.N. Kokhdan, A. Asghari,
Preparation of low cost activated carbon from Myrtus communis
and pomegranate and their efficient application for removal of
congo red from aqueous solution, Spectrochim. Acta, Part A,
86 (2012) 107–114.
- S. Kamel, H. Abou-Yousef, M. Yousef, M. El-Sakhawy, Potential
use of bagasse and modified bagasse for removing of iron
and phenol from water, Carbohydr. Polym., 88 (2012) 250–256.
- W.S. Nagh, M.A.K.M. Hanafiah, Removal of heavy metal
ions from wastewater by chemically modified plant wastes as
adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
- E.S. Abdel-Halim, S.S. Al-Deyab, Chemically modified cellulosic
adsorbent for divalent cations removal from aqueous solutions,
Carbohydr. Polym., 87 (2012) 1863–1868.
- H. Kamandari, H. Hashemipour, L. Saeednia, H. Najjarzadeh,
Experimental and modeling study on the production of
activated carbon from pistachio shells in rotary reactor, Res.
Chem. Intermed., 40 (2014) 509–521.
- H. Deng, G. Zhang, X. Xu, G. Tao, J. Dai, Optimization of
preparation of activated carbon from cotton stalk by microwave
assisted phosphoric acid-chemical activation, J. Hazard. Mater.,
182 (2010) 217–224.
- S. Chowdhury, S. Chakraborty, P. Saha, Biosorption of basic
green 4 from aqueous solution by Ananas comosus (pineapple)
leaf powder, Colloids Surf., B, 84 (2011) 520–527.
- N. Kannan, M.M. Sundaram, Kinetics and mechanism
of removal of methylene blue by adsorption on various
carbons–a comparative study, Dyes Pigm., 51 (2001) 25–40.
- T.A. Saleh, V.K. Gupta, Functionalization of tungsten oxide into
MWCNT and its application for sunlight induced degradation
of rhodamine B, J. Colloid Interface Sci., 362 (2011) 337–344.
- N.H.M. Nayan, S.I.A. Razak, W.A.W.A. Rahman, R.A. Majid,
Effects of mercerization on the properties of paper produced
from Malaysian pineapple leaf fiber, Int. J. Eng. Technol.,
13 (2013) 1–6.
- M. Maniruzzaman, M.A. Rahman, M.A. Gafur, H. Fabritius,
D. Raabe, Modification of pineapple leaf fibers and graft
copolymerization of acrylonitrile onto modified fibers, J. Compos.
Mater., 46 (2012) 79–90.
- E.A. Abdel-Galil, H.E. Rizk, A.Z. Mostafa, Production and
characterization of activated carbon from Leucaena plant wastes
for removal of some toxic metal ions from waste solutions,
Desal. Water Treat., 57 (2016) 17880–17891.
- T.A. Saleh, M.N. Siddiqui, A.A. Al-Arfaj, Synthesis of
multiwalled carbon nanotubes-titania nanomaterial for desulfurization
of model fuel, J. Nanomater., 2014 (2014) 1–6.
- A. Sallam, M.S. Al-Zahrani, M.I. Al-Wabel, A.S. Al-Farraj,
A.R.A. Usman, Removal of Cr(VI) and toxic ions from
aqueous solutions and tannery wastewater using polymer-clay
composites, Sustainability, 9 (2017) 1–14.
- E.A. Abdel-Galil, H. Moloukhia, M. Abdel-Khalik, S.S. Mahrous,
Synthesis and physico-chemical characterization of cellulose/HO7Sb3 nanocomposite as adsorbent for the removal of some
radionuclides from aqueous solutions, Appl. Radiat. Isotopes,
140 (2018) 363–373.
- M.R. Gandhi, S. Meenakshi, Preparation and characterization of
La(III) encapsulated silica gel/chitosan composite and its metal
uptake studies, J. Hazard. Mater., 203 (2012) 29–37.
- R. Karthik, S. Meenakshi, Removal of hexavalent chromium
ions using polyaniline/silica gel composite, J. Water Process
Eng., 1 (2014) 37–45.
- S. Vivekanandhan, L. Christensen, M. Misra, A.K. Mohanty,
Green process for impregnation of silver nanoparticles
into microcrystalline cellulose and their antimicrobial bionanocomposite
films, J. Biomater. Nanobiotechnol., 3 (2012)
371–376.
- A.P. Mathew, K. Oksman, M. Sain, Mechanical properties
of biodegradable composites from poly lactic acid (PLA) and
microcrystalline cellulose (MCC), J. Appl. Polym. Sci., 97 (2005)
2014–2025.
- U. Guyo, J. Mhonyera, M. Moyo, Pb(II) adsorption from
aqueous solutions by raw and treated biomass of maize
stover—a comparative study, Process Saf. Environ. Prot.,
93 (2015) 192–200.
- M. Naushad, Surfactant assisted nano-composite cation
exchanger: development, characterization and applications for
the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J.,
235 (2014) 100–108.
- M.M. Hamed, A.M. Shahr El-Din, E.A. Abdel-Galil,
Nanocomposite of polyaniline functionalized tafla: synthesis,
characterization, and application as a novel sorbent for selective
removal of Fe(III), J. Radioanal. Nucl. Chem., 322 (2019) 663–676.
- Y. Li, Q. Du, X. Wang, P. Zhang, D. Wang, Z. Wang, Y. Xia,
Removal of lead from aqueous solution by activated carbon
prepared from Enteromorpha prolifera by zinc chloride activation,
J. Hazard. Mater., 183 (2010) 583–589.
- V. Gupta, A. Rastogi, Biosorption of lead from aqueous solutions
by green algae Spirogyra species: kinetics and equilibrium
studies, J. Hazard. Mater., 152 (2008) 407–414.
- S. Lagergren, Zurtheorie der sogenannten adsorption geloster
stoffe, Kungl. Svens. Vetenskapsakad. Handl., 24 (1898) 1–39.
- Y.S. Ho, G. McKay, The sorption of lead(II) ions on peat, Water
Res., 33 (1999) 578–584.
- Y.S. Ho, G. Mckay, The kinetics of sorption of divalent metal
ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
- S.H. Chien, W.R. Clayton, Application of Elovich equation to
the kinetics of phosphate release and sorption in soils, Soil Sci.
Soc. Am. J., 44 (1980) 265–268.
- X. Huang, Y. Liu, S. Liu, X. Tan, Y. Ding, G. Zeng, Y. Zhou,
M. Zhang, S. Wang, B. Zhengd, Effective removal of Cr(VI) using
β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles, RSC Adv., 6 (2016) 94–104.
- S. Goswami, U.C. Ghosh, Studies on adsorption behavior
of Cr(VI) onto synthetic hydrous stannic oxide, Water SA,
31 (2005) 597–602.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
- D.P. Dutta, S. Nath, Low cost synthesis of SiO2/C nanocomposite
from corn cobs and its adsorption of uranium(VI), chromium(VI)
and cationic dyes from wastewater, J. Mol. Liq., 269 (2018)
140–151.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Poreand
solid-diffusion kinetics in fixed-bed adsorption under
constant-pattern conditions, Ind. Eng. Chem. Fundam., 5 (1966)
212–223.
- E.A. Abdel-Galil, R.S. Hassan, M.A. Eid, Assessment of nanosized
stannic silicomolybdate for the removal of 137Cs, 90Sr, and
141Ce radionuclides from radioactive waste solutions, Appl.
Radiat. Isotopes, 148 (2019) 91–101.
- M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Removal
of hexavalent chromium from aqueous solution using
polypyrrole-polyaniline nanofibers, Chem. Eng. J., 181–182
(2012) 323–333.
- X. Dong, L.Q. Ma, Y. Li, Characteristics and mechanisms of
hexavalent chromium removal by biochar from sugar beet
tailing, J. Hazard. Mater., 190 (2011) 909–915.
- D. Mohan, K.P. Singh, V.K. Singh, Removal of hexavalent
chromium from aqueous solution using low-cost activated
carbons derived from agricultural waste materials and activated
carbon fabric cloth, Ind. Eng. Chem. Res., 44 (2005) 1027–1042.
- N. Vennilamini, K. Kadirvelu, Y. Sameena, S. Patabhi, Utilization
of activated carbon prepared from industrial solid waste
for the removal of Cr(VI) ions from synthetic and industrial
effluent, Adsorpt. Sci. Technol., 23 (2005) 145–160.
- A. Bhattacharya, T. Naiya, S. Mandal, S. Das, Adsorption,
kinetics and equilibrium studies on removal of Cr(VI) from
aqueous solutions using different low-cost adsorbents, Chem.
Eng. J., 137 (2008) 529–554.
- M. Dakiky, M. Khamis, M. Manassra, M. Mer’eb, Selective
adsorption of chromium(VI) in industrial waste water using
low cost abundantly available adsorbents, Adv. Environ. Res.,
6 (2002) 533–540.
- N.K. Hamadi, X.D. Chen, M.M. Farid, M.G.Q. Lu, Adsorption
kinetics for the removal of chromium(VI) from aqueous solution
by adsorbents derived from used tyres and sawdust, J. Chem.
Eng., 84 (2001) 95–105.
- A. Namasivayam, K. Ranganathan, Waste Fe(III)/Cr(III)
hydroxide as adsorbent for the removal of Cr(VI) from aqueous
solution and chromium plating industry wastewater, Environ.
Pollut., 82 (1993) 255–261.
- H. Singh, V.K. Rattan, Comparison of hexavalent chromium
adsorption from aqueous solutions by various biowastes and
granulated activated carbon, Indian Chem. Eng., 56 (2014)
12–28.
- M. Nameni, M.R. Alavi Moghadam, M. Arami, Adsorption of
hexavalent chromium from aqueous solutions by wheat bran,
Int. J. Environ. Sci. Technol., 5 (2008) 161–168.
- G. Cimino, A. Passerini, G. Toscano, Removal of toxic cations
and Cr(VI) from aqueous solution by hazelnut shell, Water Res.,
34 (2000) 2955–2962.
- D.C. Sharma, C.F. Forster, A Preliminary examination into the
adsorption of hexavalent chromium using low-cost adsorbents,
Bioresour. Technol., 47 (1994) 257–264.
- W.T. Tan, S.T. Ooi, C.K. Lee, Removal of chromium(VI) from
solution by coconut husk and palm pressed fibres, Environ.
Technol., 14 (1993) 277–282.
- Y. Orhan, H. Buyukgungur, The removal of heavy metals by
using agricultural wastes, Water Sci. Technol., 28 (1993) 247–255.
- M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal
adsorption by modified oak sawdust: thermodynamics and
kinetics, J. Hazard. Mater., 141 (2007) 77–85.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–470.
- G.O. Wood, Affinity coefficients of the Polanyi/Dubinin
adsorption isotherm equations: a review with compilations and
correlations, Carbon, 39 (2001) 343–356.
- A. Agrawal, C. Pal, K. Sahu, Extractive removal of chromium(VI)
from industrial waste solution, J. Hazard. Mater., 159 (2008)
458–464.
- M.M. Dubinin, The potential theory of adsorption of gases and
vapors for adsorbents with energetically non-uniform surface,
Chem. Rev., 60 (1960) 235–266.
- J.P. Hobson, Physical adsorption isotherms extending from
ultra-high vacuum to vapor pressure, J. Phys. Chem., 73 (1969)
2720–2727.
- M. Naushad, S. Vasudevan, G. Sharma, A. Kumar,
Z.A. Al-Othman, Adsorption kinetics, isotherms, and
thermodynamic studies for Hg2+ adsorption from aqueous
medium using alizarin red-S-loaded amberlite IRA-400 resin,
Desal. Water Treat., 57 (2016) 18551–18559.
- A.A. Alqadami, M. Naushad, Z.A. Al-othman, A.A. Ghfar,
Novel metal−organic framework (MOF) based composite
material for the sequestration of U(VI) and Th(IV) metal ions
from aqueous environment, ACS Appl. Mater. Interface,
9 (2017) 36026–36037.