References

  1. V.K. Gupta, M. Gupta, S. Sharma, Process development for the removal of lead and chromium from aqueous solutions using red mud–an aluminium industry waste, Water Res., 35 (2001) 1125–1134.
  2. A. Ali, K. Saeed, F. Mabood, Removal of chromium(VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent, Alex. Eng. J., 66 (2016) 2933–2942.
  3. A. Alemu, B. Lemma, N. Gabbiye, M. Tadele, M. Teferi, Removal of chromium(VI) from aqueous solution using vesicular basalt: a potential low cost wastewater treatment system, Heliyon, 4 (2018) e00712, doi: 10.1016/j.heliyon.2018.e00682.
  4. F.C. Richard, A.C. Bourg, Aqueous geochemistry of chromium: a review, Water Res., 25 (1991) 807–816.
  5. G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, M.R. Khan, S. Kalia, Shweta, M. Bala, A. Sharma, Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium, Int. J. Biol. Macromol., 95 (2017) 484–493.
  6. C.E. Barrera-Diaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 223 (2012) 1–12.
  7. P.M. Jardine, S.E. Fendorf, M.A. Mayes, I.L. Larsen, S.C. Brooks, W.B. Bailey, Fate and transport of hexavalent chromium in undisturbed heterogeneous soil, Environ. Sci. Technol., 33 (1999) 2939–2944.
  8. S.S. Poguberović, D.M. Krčmar, S.P. Maletić, Z. Kónya, D.D.T. Pilipović, D.V. Kerkez, S.D. Rončević, Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts, Ecol. Eng., 90 (2016) 42–49.
  9. M. Pepi, F. Baldi, Modulation of chromium(VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes, Biometals, 5 (1992) 179–185.
  10. M. Gheju, Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems, Water Air Soil Pollut., 222 (2011) 103–148.
  11. J. Němeček, P. Pokorný, O. Lhotský, V. Knytl, P. Najmanová, J. Steinová, M. Černík, A. Filipová, J. Filip, T. Cajthaml, Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents, Sci. Total Environ., 563–564 (2016) 822–834.
  12. A. Kumar, G. Sharma, G. Chengsheng, M. Naushad, D. Pathania, P. Dhiman, S. Kalia, Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination and mineralization of 4-chlorophenol from simulated waste water, RSC Adv., 6 (2016) 13251–13263.
  13. A.G. Williams, M.M. Scherer, Kinetics of Cr(VI) reduction by carbonate green rust, Environ. Sci. Technol., 35 (2001) 3488–3494.
  14. A.K. Shanker, C. Cervantes, H. Loza-Tavera, S. Avudainayagam, Chromium toxicity in plants, Environ. Int., 31 (2005) 739–753.
  15. Y. Hojo, Y. Satomi, In vivo nephrotoxicity induced in mice by chromium(VI), Biol. Trace Elem. Res., 31 (1991) 21–31.
  16. K.H. Cheung, J.D. Gu, Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review, Int. Biodeterior. Biodegrad., 59 (2007) 8–15.
  17. Z.A. Al-Othman, R. Ali, M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies, Chem. Eng. J., 184 (2012) 238–247.
  18. O.N. Kononova, G.L. Bryuzgina, O.V. Apchitaeva, Y.S. Kononov, Ion exchange recovery of chromium(VI) and manganese(II) from aqueous solutions, Arabian J. Chem., 12 (2019) 2713–2720.
  19. G.S. Fomin, Water: A Control of Chemical, Bacterial and Radiation Safety according to International Standards, Protector, Moscow, 2010.
  20. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.
  21. D. Park, Y.S. Yum, J.Y. Kim, J.M. Park, How to study Cr(VI) biosorption: use of fermentation waste for detoxifying Cr(VI) in aqueous solution, Chem. Eng. J., 136 (2008) 173–179.
  22. D. Petruzzelli, R. Passino, G. Tiravanti, Ion exchange process for chromium removal and recovery from tannery wastes, Ind. Eng. Chem. Res., 34 (1995) 2612–2617.
  23. S. Rengaraj, K.H. Yeon, S.H. Moon, Removal of chromium from water and wastewater by ion exchange resins, J. Hazard. Mater., 87 (2001) 273–287.
  24. P. Gao, P. Chen, F. Shen, G. Chen, Removal of chromium(VI) from wastewater by combined electrocoagulation-electrofloatation without a filter, Sep. Purif. Technol., 43 (2005) 117–123.
  25. C.A. Kozlowski, W. Walkowiak, Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes, Water Res., 36 (2002) 4870–4876.
  26. L. Ge, B. Wu, Q. Li, Y. Wang, D. Yu, L. Wu, J. Pan, J. Miao, T. Xu, Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation, J. Membr. Sci., 498 (2016) 192–200.
  27. H. Moloukhia, W.S. Hegazy, E.A. Abdel-Galil, S.S. Mahrous, Removal of Eu3+, Ce3+, Sr2+, and Cs+ ions from radioactive waste solutions by modified activated carbon prepared from coconut shells, Chem. Ecol., 32 (2016) 324–345.
  28. E.A. Abdel-Galil, H.E. Rizk, W.M. El-kenany, Low cost natural adsorbent for removal of Pb(II) ions from waste solutions, Arabian J. Nucl. Sci. Appl., 51 (2018) 19–30.
  29. M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360.
  30. J. Kyziol-Komosinska, C. Rosik-Dulewska, A. Dzieniszewska, M. PajaÎk, I. Krzyzewska, Removal of Cr(III) ions from water and wastewater by sorption onto peats and clays occurring in an overburden of lignite beds in Central Poland, Environ. Prot. Eng., 40 (2014) 5–22.
  31. A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, N. Tase, Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems, Chem. Eng. J., 172 (2011) 37–46.
  32. M. Kobya, Adsorption kinetic and equilibrium studies of Cr(VI) by hazelnut shell activated carbon, Adsorpt. Sci. Technol., 22 (2004) 51–64.
  33. K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani, S. Pattabhi, Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solution, Bioresour. Technol., 87 (2003) 129–132.
  34. G. Moussavi, B. Barikbin, Biosorption of chromium(VI) from industrial wastewater on to pistachio hull waste biomass, Chem. Eng. J., 162 (2010) 893–900.
  35. K. Wang, G. Qiu, H. Cao, R. Jin, Removal of chromium(VI) from aqueous solutions using Fe3O4 magnetic polymer microspheres functionalized with amino groups, Materials, 8 (2015) 8378–8391.
  36. E. Alemayehu, S.T. Bruhnb, B. Lennartza, Adsorption behaviour of Cr(VI) onto macro and micro-vesicular volcanic rocks from water, Sep. Purif. Technol., 78 (2011) 55–61.
  37. M.R. Moghadam, N. Nasirizadeh, Z. Dashti, E. Babanezhad, Removal of Fe(II) from aqueous solution using pomegranate peel carbon: equilibrium and kinetic studies, Int. J. Ind. Chem., 4 (2013) 4–19.
  38. A.E. Nemr, Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies, J. Hazard. Mater., 161 (2009) 132–141.
  39. M. Alam, R. Nadeem, M.I. Jilani, Pb(II) removal from wastewater using pomegranate waste biomass, Int. J. Chem. Biochem. Sci., 1 (2012) 24–29.
  40. M. Ghaedi, H. Tavallali, M. Sharifi, S.N. Kokhdan, A. Asghari, Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of congo red from aqueous solution, Spectrochim. Acta, Part A, 86 (2012) 107–114.
  41. S. Kamel, H. Abou-Yousef, M. Yousef, M. El-Sakhawy, Potential use of bagasse and modified bagasse for removing of iron and phenol from water, Carbohydr. Polym., 88 (2012) 250–256.
  42. W.S. Nagh, M.A.K.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
  43. E.S. Abdel-Halim, S.S. Al-Deyab, Chemically modified cellulosic adsorbent for divalent cations removal from aqueous solutions, Carbohydr. Polym., 87 (2012) 1863–1868.
  44. H. Kamandari, H. Hashemipour, L. Saeednia, H. Najjarzadeh, Experimental and modeling study on the production of activated carbon from pistachio shells in rotary reactor, Res. Chem. Intermed., 40 (2014) 509–521.
  45. H. Deng, G. Zhang, X. Xu, G. Tao, J. Dai, Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation, J. Hazard. Mater., 182 (2010) 217–224.
  46. S. Chowdhury, S. Chakraborty, P. Saha, Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder, Colloids Surf., B, 84 (2011) 520–527.
  47. N. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons–a comparative study, Dyes Pigm., 51 (2001) 25–40.
  48. T.A. Saleh, V.K. Gupta, Functionalization of tungsten oxide into MWCNT and its application for sunlight induced degradation of rhodamine B, J. Colloid Interface Sci., 362 (2011) 337–344.
  49. N.H.M. Nayan, S.I.A. Razak, W.A.W.A. Rahman, R.A. Majid, Effects of mercerization on the properties of paper produced from Malaysian pineapple leaf fiber, Int. J. Eng. Technol., 13 (2013) 1–6.
  50. M. Maniruzzaman, M.A. Rahman, M.A. Gafur, H. Fabritius, D. Raabe, Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers, J. Compos. Mater., 46 (2012) 79–90.
  51. E.A. Abdel-Galil, H.E. Rizk, A.Z. Mostafa, Production and characterization of activated carbon from Leucaena plant wastes for removal of some toxic metal ions from waste solutions, Desal. Water Treat., 57 (2016) 17880–17891.
  52. T.A. Saleh, M.N. Siddiqui, A.A. Al-Arfaj, Synthesis of multiwalled carbon nanotubes-titania nanomaterial for desulfurization of model fuel, J. Nanomater., 2014 (2014) 1–6.
  53. A. Sallam, M.S. Al-Zahrani, M.I. Al-Wabel, A.S. Al-Farraj, A.R.A. Usman, Removal of Cr(VI) and toxic ions from aqueous solutions and tannery wastewater using polymer-clay composites, Sustainability, 9 (2017) 1–14.
  54. E.A. Abdel-Galil, H. Moloukhia, M. Abdel-Khalik, S.S. Mahrous, Synthesis and physico-chemical characterization of cellulose/HO7Sb3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions, Appl. Radiat. Isotopes, 140 (2018) 363–373.
  55. M.R. Gandhi, S. Meenakshi, Preparation and characterization of La(III) encapsulated silica gel/chitosan composite and its metal uptake studies, J. Hazard. Mater., 203 (2012) 29–37.
  56. R. Karthik, S. Meenakshi, Removal of hexavalent chromium ions using polyaniline/silica gel composite, J. Water Process Eng., 1 (2014) 37–45.
  57. S. Vivekanandhan, L. Christensen, M. Misra, A.K. Mohanty, Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films, J. Biomater. Nanobiotechnol., 3 (2012) 371–376.
  58. A.P. Mathew, K. Oksman, M. Sain, Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC), J. Appl. Polym. Sci., 97 (2005) 2014–2025.
  59. U. Guyo, J. Mhonyera, M. Moyo, Pb(II) adsorption from aqueous solutions by raw and treated biomass of maize stover—a comparative study, Process Saf. Environ. Prot., 93 (2015) 192–200.
  60. M. Naushad, Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  61. M.M. Hamed, A.M. Shahr El-Din, E.A. Abdel-Galil, Nanocomposite of polyaniline functionalized tafla: synthesis, characterization, and application as a novel sorbent for selective removal of Fe(III), J. Radioanal. Nucl. Chem., 322 (2019) 663–676.
  62. Y. Li, Q. Du, X. Wang, P. Zhang, D. Wang, Z. Wang, Y. Xia, Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation, J. Hazard. Mater., 183 (2010) 583–589.
  63. V. Gupta, A. Rastogi, Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies, J. Hazard. Mater., 152 (2008) 407–414.
  64. S. Lagergren, Zurtheorie der sogenannten adsorption geloster stoffe, Kungl. Svens. Vetenskapsakad. Handl., 24 (1898) 1–39.
  65. Y.S. Ho, G. McKay, The sorption of lead(II) ions on peat, Water Res., 33 (1999) 578–584.
  66. Y.S. Ho, G. Mckay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
  67. S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44 (1980) 265–268.
  68. X. Huang, Y. Liu, S. Liu, X. Tan, Y. Ding, G. Zeng, Y. Zhou, M. Zhang, S. Wang, B. Zhengd, Effective removal of Cr(VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles, RSC Adv., 6 (2016) 94–104.
  69. S. Goswami, U.C. Ghosh, Studies on adsorption behavior of Cr(VI) onto synthetic hydrous stannic oxide, Water SA, 31 (2005) 597–602.
  70. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  71. D.P. Dutta, S. Nath, Low cost synthesis of SiO2/C nanocomposite from corn cobs and its adsorption of uranium(VI), chromium(VI) and cationic dyes from wastewater, J. Mol. Liq., 269 (2018) 140–151.
  72. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  73. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Poreand solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  74. E.A. Abdel-Galil, R.S. Hassan, M.A. Eid, Assessment of nanosized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions, Appl. Radiat. Isotopes, 148 (2019) 91–101.
  75. M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers, Chem. Eng. J., 181–182 (2012) 323–333.
  76. X. Dong, L.Q. Ma, Y. Li, Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing, J. Hazard. Mater., 190 (2011) 909–915.
  77. D. Mohan, K.P. Singh, V.K. Singh, Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth, Ind. Eng. Chem. Res., 44 (2005) 1027–1042.
  78. N. Vennilamini, K. Kadirvelu, Y. Sameena, S. Patabhi, Utilization of activated carbon prepared from industrial solid waste for the removal of Cr(VI) ions from synthetic and industrial effluent, Adsorpt. Sci. Technol., 23 (2005) 145–160.
  79. A. Bhattacharya, T. Naiya, S. Mandal, S. Das, Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents, Chem. Eng. J., 137 (2008) 529–554.
  80. M. Dakiky, M. Khamis, M. Manassra, M. Mer’eb, Selective adsorption of chromium(VI) in industrial waste water using low cost abundantly available adsorbents, Adv. Environ. Res., 6 (2002) 533–540.
  81. N.K. Hamadi, X.D. Chen, M.M. Farid, M.G.Q. Lu, Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust, J. Chem. Eng., 84 (2001) 95–105.
  82. A. Namasivayam, K. Ranganathan, Waste Fe(III)/Cr(III) hydroxide as adsorbent for the removal of Cr(VI) from aqueous solution and chromium plating industry wastewater, Environ. Pollut., 82 (1993) 255–261.
  83. H. Singh, V.K. Rattan, Comparison of hexavalent chromium adsorption from aqueous solutions by various biowastes and granulated activated carbon, Indian Chem. Eng., 56 (2014) 12–28.
  84. M. Nameni, M.R. Alavi Moghadam, M. Arami, Adsorption of hexavalent chromium from aqueous solutions by wheat bran, Int. J. Environ. Sci. Technol., 5 (2008) 161–168.
  85. G. Cimino, A. Passerini, G. Toscano, Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell, Water Res., 34 (2000) 2955–2962.
  86. D.C. Sharma, C.F. Forster, A Preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents, Bioresour. Technol., 47 (1994) 257–264.
  87. W.T. Tan, S.T. Ooi, C.K. Lee, Removal of chromium(VI) from solution by coconut husk and palm pressed fibres, Environ. Technol., 14 (1993) 277–282.
  88. Y. Orhan, H. Buyukgungur, The removal of heavy metals by using agricultural wastes, Water Sci. Technol., 28 (1993) 247–255.
  89. M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics, J. Hazard. Mater., 141 (2007) 77–85.
  90. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  91. G.O. Wood, Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations: a review with compilations and correlations, Carbon, 39 (2001) 343–356.
  92. A. Agrawal, C. Pal, K. Sahu, Extractive removal of chromium(VI) from industrial waste solution, J. Hazard. Mater., 159 (2008) 458–464.
  93. M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface, Chem. Rev., 60 (1960) 235–266.
  94. J.P. Hobson, Physical adsorption isotherms extending from ultra-high vacuum to vapor pressure, J. Phys. Chem., 73 (1969) 2720–2727.
  95. M. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z.A. Al-Othman, Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin, Desal. Water Treat., 57 (2016) 18551–18559.
  96. A.A. Alqadami, M. Naushad, Z.A. Al-othman, A.A. Ghfar, Novel metal−organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment, ACS Appl. Mater. Interface, 9 (2017) 36026–36037.